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Abstract

ABSTRACT

This report documents the development of a system to automatically generate the 
structure of a learning model, specifically a modular neural network.

The system required the development of three sub-systems, these are,

• A system to create, train, and manipulate a neural network

• A system to create, train, and manipulate a modular network

• A system to implement a genetic algorithm, capable of ‘breeding’ neural networks

The systems are combined to produce a program capable of using the genetic 
algorithm to breed neural network for use in a modular network.
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Chapter 1 Introduction

1. INTRODUCTION

1.1  The Problem Considered

There are many computational systems capable of learning to perform a task.  Most of 
these systems have a fixed structure, and learn by altering various parameters until an 
internal representation of the problem is built up.  However, there is no systematic 
method for learning the structure of such systems.  

The process of manually evaluating a task to determine which structures might be 
suitable is a time-consuming and complex one, and often requires a very high level of 
domain  knowledge.   This  project  is  concerned  with  automatically  generating  the 
structure, without requiring an in-depth knowledge of the task.  

Three main systems will combine to produce an overall system:
  
1. Artificial neural networks will be used as “experts” capable of learning a simple 

task given suitable input-output pairs. 
2. A modular network (sometimes referred to in literature as a “mixture of experts”) 

will govern a set of these experts and learn which are most suited to particular 
regions of input space.  This has the effect of decomposing the task into a set of 
sub-tasks, each performed by a different expert.  

3. Finally, a genetic algorithm will take a population of experts and “breed” them to 
combine  the  best  properties  of  existing  experts  to  produce  new experts  more 
capable of performing the task.

The  combination  of  a  modular  network,  which  produces  a  decision  as  to  which 
experts are most suited to a sub-task, and a genetic algorithm, which makes beneficial 
structural changes to the experts, should allow expert structures to be built. 

Its worth noting that a modular network is a type of neural network, and modular 
networks can themselves be used as experts to produce a hierarchical structure [1].

1.2  Practical Relevance

Neural networks have been shown to be very successful learning models.  The range 
of tasks they can learn to perform is vast, and their ability to generalise makes them 
particularly impressive.  Whilst many of the applications they have been applied to 
are fairly abstract, they have also been used to perform many popular tasks such as 
object and speech recognition.  But probably the most fundamental use is research 
into the human brain, on which neural networks are modelled. 

The manual design of neural networks a laborious and complex process.  If the design 
can be achieved quickly by an automated process, then the time saved can be put to 
better use evaluating the structures that have emerged.  Also, the solution to tasks that 
cannot currently be performed may become possible.  The evaluation of the structures 
generated would in turn lead to a greater understanding of those tasks.
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Chapter 1 Introduction

1.3  Previous Work

1.3.1  Neural Networks

Neural networks are very common in the field of artificial intelligence.  A range of 
variations of both the structure and training methods has been devised, but the general 
principles remain unchanged.  Material on neural networks can be found in a great 
deal of artificial intelligence literature, such as [7] or [8].

Modular networks are a more recent development of neural networks, see Jacobs, 
Jordan, Nowlan, & Hinton (1991) [3].  Since this is a relatively new idea only a few 
variations  have  been  developed.   The  most  substantial  of  these  are  the  use  of  a 
localised  gating  for  the  modular  network,  Ramamurti  & Ghosh  [9],  and  the  EM 
training algorithm devised by Jacobs, and Jordan (1993) [4].

The neural networks I will be using are standard, and have neither a structure nor use 
training techniques other than those originally developed.

1.3.2  Genetic Algorithms

Genetic algorithms are also very common.  The basic algorithm is the same for most 
of these systems [7].  A genetic algorithm uses a number of other algorithms.  An 
example  is  the  mutation  algorithm  that  is  responsible  for  making  small  random 
changes to the population.  Many implementations of these algorithms exist.

There is a difference between existing genetic algorithms and the algorithm used in 
this project.  While most genetic algorithms encode the population members into bit-
strings before operating on them, my algorithm works directly on the expert networks, 
without encoding them first.

1.3.3  Structure Generation

There exist systems that can build up the structure of neural networks.  Two main 
techniques are used - both rely on some form of genetic algorithm.  The first method 
applies only mutation.  This will alter the structure of the networks, such as adding or 
removing nodes,  to  attempt to  produce a  better  network.   The mutations  that  are 
applied can either be randomly chosen, or are determined by a method to predict 
which will produce the best network [6].  The second method uses a genetic algorithm 
that implements some form of crossover as well as mutation.  This both combines the 
structural properties of existing networks in the population, and applies mutation, to 
create new networks.  The mutation is nearly always chosen using a random process.

There also exist systems to build the structure of modular networks.  The techniques 
alter the number of experts in the modular network.  There are two ways this can 
happen.  Either, a small initial modular network is created and then grown by adding 
experts.  Or, a large initial network is created and shrunk, by removing experts.  The 
network size will continue to be altered until an optimal size is found [9], [10].
 
I know of no techniques that use genetic algorithms to breed the experts for a modular 
network.  

2



Chapter 1 Introduction

1.4  Objectives

There are four stages to this project.  The three systems described above (1.1) must be 
coded.  These systems must then be combined to make an overall system capable of 
generating the structure of experts, and hence the structure of the modular network. 
There is a specific order to these stages:

1. The code to instantiate and train a neural (expert) network must be written. Once 
this is completed, they can be used as experts in a modular network.  

2. It seems a natural progression to write the code to instantiate and train a modular  
network next.  

3. The genetic algorithm can be coded.
4. Finally, the three previous sub-systems must be combined to produce an overall 

system capable  of  automatically  generating  the  structure.   I  will  refer  to  this 
system as the “modular breeder”.

The bulk of the work will  be in the first  three stages.   The fourth stage will  call 
methods defined on the previous three sub-systems, to produce the overall system. 
Most of the computational work will be done by the three sub-systems.

1.5  Working Environment

 I primarily used machines running Linux, with the Java Development Kit (jdk).  A 
number of versions of jdk are available on the university machines.  The most recent 
is version 2.0.  My code is known to be compatible with versions 2.0, 1.1.7, and 1.1.8. 
However, the graphical interface requires Swing version 1.1, rather than version 1.0 
which is provided on the university computers.  Downloading the required classes 
from Sun’s website and appending the location of the classes to my classpath easily 
solved this. 

My program can write information to files, such as the error of the system as it is 
trained on a given task.  The information is written in a format that is compatible with  
MATLAB.  This allows MATLAB to be used to read the files and generate graphs.  

1.6  Outline of Remaining Report

The remainder of the report is organised as follows.  Section 2 presents the theory 
behind  the  three  sub-systems,  and  describes  their  combination  into  the  complete 
system.  Section 3 illustrates  the design and implementation of the system.  This 
includes the requirements of the system, the choice of language, and the structure of 
the program.  Section 4 introduces the experiments that were carried out to test the 
system,  why they were  chosen,  and presents  various  results  that  demonstrate  the 
system’s current performance.   Finally, section 5 gives conclusions of the project, 
including the achievements, possible improvements and extensions.
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Chapter 2 Theory

2. THEORY

2.1  Expert Network

2.1.1  Architecture

I have implemented a feed-forward, layered, neural network, as described by Pratt [8]. 
This  type  of  network consists  of  a  number  of  inputs,  outputs,  and hidden nodes, 
organised into layers.  The nodes only connect to nodes in the layer below.  Figure 2.1 
shows a network with an input layer, an output layer, and two hidden layers.  The 
nodes have full connectivity (with only the leftmost connections shown for clarity).  

Figure 2.1: Feed-forward, layered, network architecture

Each node has associated with it a number of inputs, a set of weights corresponding to 
those inputs, and a threshold.  The output of the node is calculated by a function of the 
net weighted input into the node, as shown in figure 2.2.

     t                      

               
  

net=∑
n=1

K

(in wn )−t (2.1)

a=F (net ) (2.2)

Figure 2.2: Node activation.                                    

4

∑ a

1i

2i

Ki

1w

2w

Kw




Inputs

Activation

Weights Threshold = 

Hidden 
Units

Input 
Units

Output 
Units

F ( net )



Chapter 2 Theory

The node function will be the Sigmoid function,

F ( x )=
1

1+e
−x

T
(2.3)

where  T is  a  small  positive constant.   This  is  a  standard function  used in  neural 
networks, and a description of it can be found in many texts, such as [7] or [8].

2.1.2  Training
 
The  network  will  be  trained  using  the  Backpropagation  algorithm.   This  is  as 
described by Pratt [8].  This algorithm works as follows.  First the inputs into the 
network are set, and the activations of the nodes allowed to propagate through the 
network to produce an output.  The errors of the output nodes are then calculated 
using,   

δ j
p=(d j

p−a j
p ) (2.4)

where δ j
p  is the error of (output) node j  given pattern p , d j

p  is the desired output 

of the node, and a j
p  is the actual output of the node.      

These errors are then propagated back through the network by being used to calculate 
the errors of the hidden nodes,   

δ i
p=∑

j
w j , i δ j

p
(2.5)

where w j , i  is the weight of the connection from node j  to node i .
The weights of all nodes are adjusted using,  
 

w j , i :=w j , i+ηai
p δ j

p f ' ( net j
p ) (2.6)

where  η  is a small positive constant, and  f ' ( net j
p )   is the differentiated function 

acting on the net output of node j given pattern p .
Finally, the thresholds of the nodes are adjusted using,

θ j :=θ j−ηδ j
p f ' (net j

p ) (2.7)

where θ j  is the threshold of node j .

As this algorithm requires the differentiation of the function in order to calculate the 
weight and threshold changes, it becomes inconvenient if different functions are used 
in  different  nodes.   To allow this,  if  no differentiated  function  is  supplied  to  the 
Backpropagation method, it becomes,   

f ' ( net )=1.0 (2.8)
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Chapter 2 Theory

2.1.3  Structural Operations

In  order  to  breed  networks,  a  number  of  methods  were  implemented  to  allow 
structural alteration.  These methods enable the following, 
 
1. Addition/removal of a layer.
2. Addition/removal of a node.
3. Addition/removal of a connection.
4. Setting of a node’s connection weights.
5. Setting of a node’s function.
6. Setting of a node’s connectivity pattern.
7. Setting of a node’s threshold.
8. Activation/deactivation of a node.

There is also a range of methods that return the structural parameters of the network.

2.2  Modular Network

2.2.1  Architecture

The modular  network  implemented  is  described by Haykin  [1]  (also  see  [2]).   It 
consists of a number of experts that are governed by a gating network.  Given an input 
pattern, the gating network produces a decision as to which experts are most capable 
of producing a correct output.  A weight is produced corresponding to each expert, 
which scales its output according to its ability.  As mentioned above, the experts are 
neural networks, although they could be any learning model.  The architecture of the 
modular network is shown below, in figure 2.3.

 

         
  

   O=∑
n=1

K

yn gn (2.9)

Figure 2.3: Modular network architecture
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Chapter 2 Theory

The gating network consists of a number of so-called “Softmax” nodes.  This is due to 
the function they use, called a Softmax function.  This was devised in 1990 by Bridle. 
The network consists of a single layer of softmax nodes fully connected to the input 
layer.  Figure 2.4 shows this network (with only the connections of the first node 
shown for clarity).

        w1

x1      g1

        w2

x2 g2

            
        wK

          
x K g K

Figure 2.4: The gating network

Each of these nodes corresponds to an expert, and produces the weight for that expert. 

The Softmax function is, 

g k=
e

u k

∑
n=1

K

e
u

n
, k=1,2,, K (2.10)

where u k  is the weighted input into node k ,

u k=w k x k , k=1,2,, K (2.11)

2.2.2  Training

Two algorithms have been implemented.  The first is very simple and will not be 
explained here.  The second is based on the Winner-takes-all procedure, described by 
Jacobs, Jordan, and Barto [2].  This is a more complex procedure.  The algorithm 
works as follows.  First, the modular network is presented with an input pattern.  The 
error of the network is then calculated using, 

E p=
1
2

(d p−a p ) (d p−a p ) (2.12)

where E p  is the error of the network on pattern p , d p  is the desired output of the 
network, and a p  is the actual output.
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Chapter 2 Theory

This error is taken to be the current performance of the network.  Next, it needs to be 
determined whether the performance of the network has significantly improved or 
not.  This is done by comparing the networks current performance with the networks 
past performance on the same input pattern.  The past performance of the network is 
calculated iteratively using, 

Ē p (t )=αE p (t )+(1−α ) Ē p (t−1 ) (2.13)

where Ē p (t )  is the measure of past performance at time step t  on pattern p , and 
α  is  a  constant,  0<α<1 ,  that  determines  how rapidly past  values  of  E p  are 
forgotten.

The comparison that evaluates true if the network has improved is, 

E p (t )<γ Ē p (t−1 ) (2.14)

where γ  is a factor that determines how much the performance must have increased 
for the network to be considered improved.  

The errors of the experts then need to be determined by calculating their error using, 

E i
p=∣∑j=1

N

δ j
p

N
∣ (2.15)

where E k
p  is the error of expert k  on pattern p , δ j

p  is the error of output j  (as 
calculated in the Backpropagation algorithm described in section 2.1.2), and N is the 
total number of outputs.

The expert with the least error is taken to be the winner, and all others are taken to be 
the losers.  If the network has improved, then the desired output of the softmax node 
corresponding to the winning expert is set to 1, and the desired outputs of the softmax 
nodes corresponding to the all other experts are set to 0.  The weights of the softmax 
nodes are then adjusted to bring the output of the nodes closer to their desired outputs, 
using

wk :=wk+ηxk δk k=1,2,, K  (2.16)

where  δk is calculated in the same way as the experts.  On the other hand, if the 
network has not improved, then the desired outputs are all set to bring the outputs of 
the nodes closer to a neutral value.  

This neutral value is 
1
N

, where N  is the number of experts.

Finally, the desired outputs of the experts are adjusted proportionally to the weight 
produced by the corresponding softmax nodes.  This is to influence the training of 
each  expert  according  to  it’s  performance.   The  desired  outputs  are  adjusted  as 

8



Chapter 2 Theory

follows,

d̄ k
p=g k

p (d k
p−ak

p )+a k
p (2.17)

where d̄ k
p  is the altered desired output of expert k  on pattern p .

For a discussion of the effects of this algorithm, please see [2].

2.3  Genetic Algorithm

2.3.1  General Method

The general  method is  described by Mitchell  [7].  The following description  is  as 
implemented in this project.  You start with an initial population of neural networks. 
The method describes the program cycle that creates new populations of networks. 
The cycle is simple, as the majority of work is done by four algorithms employed by 
the general method.  These algorithms are as follows,

1. Fitness evaluator: This evaluates the fitness of each population member.
2. Selection algorithm: This selects a member from the population.  The fitness of 

the member is commonly used to determine selection.
3. Crossover operation: This takes a set of population members, called the “parents”, 

and produces “child” members, consisting of various properties taken from the 
parents. 

4. Mutation algorithm: This takes a population member and applies some kind of 
mutation to its properties.

The networks in the initial  population are initialised to have a random number of 
layers, and a random number of nodes per layer, both parameters set by the user. 

The program cycle is as follows,

1. Use the fitness evaluator to assign a fitness to each member in P , where P  is 
the population

2. Probabilistically select  
N

100
(100−c )  members of  P  to add to  P s , using the 

selection  algorithm,  where  N  is  the  size  of  P ,  c  is  the  percentage  of 
population members to crossover, and P s  is the new population.

3. Probabilistically select  
N

100
c  members of P , using the selection algorithm, to 

be used as parents, and produce children using the crossover operation.
4. Add these children to P s .
5. Mutate m percent of the members of P s , using the mutation algorithm.
6. Update P ← P s .    
7. Repeat from step 1, until desired fitness has been reached.

As previously mentioned, the four algorithms described above perform the bulk of 

9
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work.  They are described below.

2.3.2  Fitness Evaluator

Two algorithms  have  been  produced.   They are  both  based on  the  same general 
method.  For both algorithms, the error of the population member, E , is calculated as 
follows,

E=∑
p=1

K

(d p−a p ) (2.18)

The inverse of this error is then taken to produce a fitness measure, F ,

F =
1
E

(2.19)

In the first algorithm, this is the fitness measure assigned to the population member. 
The second algorithm assigns the square of this value as the members fitness,

F '
=F2 (2.20)

where F '  is the fitness this algorithm assigns to the member.

2.3.3  Selection Algorithm

The selection algorithm is fitness proportionate.  It works as follows.  A member, i , 
is randomly selected from the population.  The probability of selection, pr , is then 
calculated using, 

pr= F i

∑
n=1

N

F n   (2.21)

where F i  is the fitness of the member.

A random number, α , is generated, 0<α<1 , and compared with pr .  If pr>α , 
then i  is selected, otherwise the cycle repeats until a member is selected.

2.3.4  Crossover Operation

The crossover operation takes two parents, and produces two children.  It operates by 
randomly selecting a layer number common to both parents (excluding the input and 
output layers), and positions in that layer.  The parents are then cut, and the halves 
spliced together to produce the children.  This is best illustrated with a diagram, see 
figure 2.5 below.

10
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Figure 2.5: An example of the crossover operation

The functions and thresholds of the nodes are kept unchanged.  The connections may 
be altered to ensure that the connectivity pattern is preserved, but any connections that 
can remain, do so, along with their corresponding weights.  

2.3.5  Mutation Algorithm

Five mutation algorithms have been implemented.  They work as follows,

1. MutateAll:   This has the possibility of  applying any of the possible  structural 
alterations.  These are addition of a connection, node, or layer, or the removal of a 
node,  or  layer.   The  decision  not  to  implement  addition  of  connections  is  to 
prevent multiple connections between nodes.  All choices are completely random, 
and have equal probability.  

2. MutateAllButConnections:   This  carries  out  the  same  mutation  as  MutateAll, 
except the connections are not mutated.

3. MutateNodes:  A node is added or removed from a hidden layer randomly chosen.
4. MutateConnections:  This operation removes a connection from one of the nodes, 

selected randomly.  It could be either a hidden node, or an output.
5. NodeDeactivationMutation:  This algorithm deactivates nodes at random (except 

for input and output nodes).  There is the danger with this algorithm that all nodes 
in a layer will be deactivated, leading to a useless network.  For this reason, it is  
best used when dealing with large network, where the possibility of deactivating 
all nodes in a layer is slim.

11
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2.4  Modular Breeder

2.4.1  Integration Aims

The three systems described above must now be integrated.  The aim is to make a 
system capable of taking a set patterns that define a task, and generate the structure of 
a modular network capable of performing it.  The idea is as follows. The modular 
network  will  decompose  the  task  into  a  set  of  smaller,  easier,  sub-tasks.   Expert 
networks will be produced for each of the sub-tasks, using the genetic algorithm.  This 
should be made easier due to the simplification of the task.  The networks produced 
by the genetic algorithm will become experts in a new modular network, allowing the 
entire task to be performed.  This cycle will continue some stopping criteria have been 
met.  

2.4.2  The Algorithm

The stages of the algorithm are as follows.

1. An  initial  population  of  modular  networks  is  produced  randomly,  using 
parameters supplied by the user.

2. The modular networks are trained for a user-defined number of epochs.
3. For each input pattern, the best experts from each modular network are recorded. 

The  best  experts  are  determined  by  looking  at  the  weights  that  the  modular 
network allocates to the experts, given the input pattern.

4. The best experts from the first modular network will be used to define the sub-
tasks,  as  follows.   For each of the experts,  the set  of patterns  for  which they 
perform best, are grouped.  These groups make up the sub-tasks.

5. For each of the patterns making up a sub-task,  the corresponding best experts 
from the other modular networks are recorded. This makes up a group of experts 
that are best at the sub-task.  See figure 2.6.

Sub-task 1.

        Figure 2.6: An example of sub-task identification (only the first sub-task shown).

6. The groups of best experts for each sub-task will make up separate populations. 
So you have one population per sub-task.

7. Each population is used in a genetic algorithm.  The algorithm will evolve the 
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experts to produce new populations of experts, each more capable than the  last. 
The patterns used by a particular genetic algorithm are the set of patterns that 
make  up  the  sub-task  for  the  population.   The  improvement  required  by  the 
algorithm is a user-defined parameter.

8. The new populations are then split between the same number of modular networks 
as  in  the  initial  population.   The  first  modular  network  will  receive  the  best 
population member from each sub-task population.  The second modular network 
will receive the second best member from each sub-task population, and so on. 
This creates modular networks with the same number of experts as sub-tasks.

9. The cycle then continues from step2, until the desired error is reached.

Note that the first modular network should be best at the task, as it received the best 
members from each population to make up its experts.  This also means that the first 
modular network’s experts should be most suitable to define the sub-tasks, as they 
perform the best on them. 

13



Chapter 3 Design

3. DESIGN

3.1  Requirements

There are three requirements.  The systems must be,

1. Flexible
2. Easy to test
3. Easy to extend

3.1.1  Flexibility

This is the primary requirement.  There are three reasons for this.  

Firstly,  the  performance  of  the  systems  is  dependent  on  a  variety  of  parameters. 
Mechanisms must be in place to allow these to be altered, both automatically, and by 
the user, so that optimal values can be found.  

Secondly, the success the systems will experience is unknown.  If a method does not 
perform well, it should be possible to change it for another without needing to re-
implement any existing code.  This is most relevant for the genetic algorithm, and the 
modular network breeding system.  These use original methods whose success cannot 
be predicted easily.  

Finally, both the structural and behavioural properties of the systems need to be able 
to be dynamically retrieved, altered, and copied.  This is primarily to allow the genetic 
algorithm, and the modular breeding system, to alter the structure of the networks.  It 
is also relevant to the various training algorithms that need to alter the behaviour of 
the system.

3.1.2  Ease of Testing

As indicated above, the systems are largely experimental.  Testing must be a relatively 
hastle-free process, allowing the parameters to be changed quickly and easily.  

The  tests  should  produce  a  variety of  results  that  can  illustrate  properties  of  the 
systems.   These  results  must  be  in  a  format  that  can  be  easily  interpreted.   The 
reporting of these results must be able to be switched on and off, allowing different 
results  to  be displayed when testing for  different  properties.  This  has  use in  both 
correctness and performance testing.

3.1.3  Ease of Extending

One of my intentions is to produce a system that can be easily extended.  It seems a 
shame to spend a year developing a system that will never again be put to use.  If the 
proper groundwork can be made on a system that has the potential to be used in the 
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future, then an effort needs to be made to allow the system to be as extendable as 
possible.  

Another point is that flexibility and ease of extension go hand-in-hand.  For a system 
to be truly flexible, it must also be extendable.

It’s worth pointing out that speed is not an issue.  I am prepared to put up with a  
potentially slow program, providing the three requirements listed above are met.

3.2  Choice of Language

This project is implemented in Java.  This decision was reached relatively quickly, for 
several reasons.  

Firstly, neural networks and modular networks are inherently object-oriented.  They 
can be decomposed into structural elements that link together in a highly organised 
way.  These elements can easily be represented as objects in Java.  Genetic algorithms 
also seem naturally suited to an object-oriented implementation, as they essentially 
deal with a population of objects.  

Secondly,  the  integration  of  the  different  systems  into  the  final  modular  network 
breeding system should be easy.   The methods that do the bulk of the work will have 
already  been  defined  on  the  sub-system  classes.   It  should  just  be  a  matter  of 
instantiating the classes I need, and starting the methods running with the appropriate 
parameters.  

The third reason is because of the need to provide a flexible and extendable program. 
Java has in-built support for the implementation of different methods (that have a 
common super-class), and allows them to be dynamically switched between.  This 
allows any new methods to be defined and used without changing any existing code.  

Finally, Java is a language that I have quite taken to, as it feels to me like a natural 
progression from C.   For these reasons,  it’s  a  language I  would like to get  more 
experience of coding in.  

3.3  Considerations

In designing the systems to meet the requirements listed above, some considerations 
come to light.  

The first  concerns  the  structure of  the code,  namely the hierarchical  relationships 
between various classes.  This includes the relationships between classes and their 
super-classes, and between them and the classes they use.  Because of the natural 
decomposition into hierarchies already present in the systems, I don’t believe there 
will be a great deal of ambiguity as to the class hierarchies required.  

The second consideration is the identification of the packages that the classes will be 
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contained in.  Again, this will not be a complex process due to the clear identification 
of the operations performed by the systems implemented.  

Progress monitoring of the systems is an issue.  A decision has to be made as to what 
information  will  be  reported  in  real-time  as  the  systems  run,  as  well  as  to  what 
information will be needed to analyse the systems performance.   This information 
needs to be stored in such a way that it can be easily interpreted.  

The final consideration is that of the interface with the user.  A text-based interface 
will be sufficient to input the parameters, but there is the issue of whether it is easy 
enough to use, and easy enough to alter parameters.

3.4  Design of the Systems

This section will report the key designs that were used in implementing this project, 
illustrated with some UML diagrams.  The entire project is too substantial to include a 
complete design.  Appendix A provides a full listing of the classes and their methods.

3.4.1  Network class

The  abstract  class,  Network,  defines  all  artificial  neural  networks.   It  forces  any 
classes that extend it to implement five methods that it specifies.  These methods are 
the fundamental operations that define an artificial neural network, whether it is a 
feed-forward, layered network, or a modular network.  See figure 3.1 below.  

Figure 3.1: The abstract Network class

One example of where this is used is the modular network.  The modular network can 
take any class that extends Network as an expert.  This is because the only operations 
needed  for  the  correct  operation  of  an  expert  are  those  that  the  Network  class 
enforces.  This allows the possibility of hierarchical structures, where an expert is in 
fact another modular network.  
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3.4.2  Neural Network

The FeedForwardLayeredNetwork class implements the feed-forward, layered, neural 
network as described in section 2.1.  It extends the abstract class Network (figure 3.1). 
The classes  used by FeedForwardLayeredNetwork indicate  the  structural  elements 
that combine to make a neural network.  They are shown below in figure 3.2.  

Figure 3.2: The FeedForwardLayeredNetwork class

Class Layer represents the hidden layers that can be present in a neural network.  The 
methods  defined  on  this  class  take  as  much  work  as  possible  away  from 
FeedForwardLayeredNetwork.  Even so, the bulk of the work still has to be done by 
methods  in  FeedForwardLayeredNetwork.   This  is  because  most  of  them require 
manipulation of the rest of the network’s components. 

Class  Input  represents  an  input  node.   The  number  of  inputs  that  a 
FeedForwadLayeredNetwork has does not vary.  Because of this, Input objects are 
stored directly in FeedForwardLayeredNetwork rather than in a Layer - the number of 
inputs does not change, so there is no need to use the methods provided by Layer. 
Input nodes do not have connections  to other nodes, but they do store references to 
the connections from other nodes.  The distinction is described shortly.

Class ConnectedNode represents nodes that have connections to other nodes in the 
network.  Most ConnectedNode objects are stored in class Layer.  The exceptions to 
this are the ConnectedNode objects that are used as output nodes.  Since the number 
of  outputs  in  a  network  will  not  vary,  they  can  also  be  stored  directly  in  the 
FeedForwardLayeredNetwork class, like the Input objects.

Input and ConnectedNode both have a common abstract super-class, Node.  Node 
exists  to enforce a set  of methods that define a node’s properties.  The two most 
important are to set the activation of the node, and get the activation of the node. 
FeedForwardLayredNetwork calls  these  two methods on one  ConnectedNode at  a 
time, in a particular order.  This propagates the node activations through the network 
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to produce an output. 

A ConnectedNode  has  a  threshold,  and  uses  classes  Connection,  Function,  and 
ConnectivityPattern, as shown in figure 3.3 below.

Figure 3.3: The ConnectedNode class

Class Connection implements the connections in the network.  A Connection object 
stores  a  reference to  a  Node,  and a  weight  value.   It  has  a  method to return  the 
weighted activation of the Node.  Nodes store references to any Connections that are 
from a ConnectedNodes to the Node.  This is to allow easy navigation forwards and 
backwards through the network.  See figure 3.4.

Figure 3.4: The Node class

The Function class is an abstract class that enforces methods to implement a function, 
such as the Sigmoid function.  It takes the ConnectedNode’s set of Connections, and 
produces an activation.

ConnectivityPattern  is  also  an  abstract  class.   It  enforces  methods  that  define  a 
connectivity-pattern,  given  a  number  of  possible  Connections.  These  methods  are 
used  by  ConnectedNode  to  ensure  that  if  any  methods  are  called  to  alter  its 
connections, the connectivity-pattern is upheld.  The connectivity-pattern is returned 
in the form of a bit-string, indicating which Connections will be kept.
The use of these different classes by ConnectedNode, means that a variety of different 
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functions and connectivity-patterns can be implemented.  Some are shown in figure 
3.5.  This leads to a very flexible neural network implementation. 

i)

ii)

Figure 3.5: Some implementations of Function and ConnectivityPattern

3.4.3  Modular Network

Class ModularNetwork implements a modular network, as described in section 2.2.  It 
extends the abstract class Network.  The UML diagram is shown in figure 3.6.

The ModularNetwork class stores a set of Network objects as the experts.  The inputs 
of the modular network are represented by Input objects, as in FeedForwardLayered-
Network.  The gating network is implemented using ConnectedNodes with softmax 
functions, and full-connectivity to the Inputs of the modular network.

Figure 3.6: The ModularNetwork class
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3.4.4  Training of the Neural Network Systems

The training  of  a  FeedForwardLayeredNetwork is  performed by a  FFLNTraining-
Algorithm.  This is an abstract class that specifies the train method that a training 
algorithm must implement.  The train method takes a FeedForwardLayeredNetwork, 
and some input-output patterns.  It trains the network using the various methods that 
FeedForwardLayeredNetwork provides.  The class BackPropagation implements the 
Backpropagation algorithm. 

Similarly, the training of a ModularNetwork is performed by a subclass of the abstract 
class MNTrainingAlgorithm.  The train method takes a ModularNetwork, and input-
output  patterns,  and trains  it  using the methods provided by the ModularNetwork 
class.   There  are  two  MNTrainingAlgorithms,  ErrorAdjust,  and  WinnerTakesAll., 
shown in figure 3.7.

i) ii)

Figure 3.7: The classes that implement the training algorithms

3.4.5  Genetic Algorithm

The genetic algorithm is implemented by class FFLNBreeder.  When instantiated, this 
either takes a population of FeedForwardLayeredNetworks, or parameters that allow a 
random population to be generated.  

There is only one general algorithm for breeding a population of components, which 
was  described  in  section  2.3.   This  algorithm  is  defined  by  a  breed  method  in 
FFLNBreeder.  To provide a variety of behaviours, FFLNBreeder uses four classes 
that abstract the fitness evaluator, selection algorithm, crossover operation, and the 
mutation algorithm.  This is shown in figure 3.8 below.

Figure 3.8: The FFLNBreeder class
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These classes are extended to provide a range of algorithms.  Some of the algorithms 
implemented are shown below, in figure 3.9.

i) ii)

iii)

iv)

Figure 3.9: Some of the implementations of the classes used by FFLNBreeder

3.4.6  Modular Breeder

The modular network breeding system (as described in section 2.4) is implemented by 
a class called ModularBreeder.  It is instantiated with parameters that allow a random 
population to  be generated.   This  class  uses the three sub-system classes,  namely 
FeedForwardLayeredNetwork,  ModularNetwork,  and  FFLNBreeder,  as  shown  in 
figure 3.10.

Figure 3.10: The ModularBreeder class
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The class defines a method that starts the system’s program cycle.  The method takes 
a  number  of  input-output  patterns,  parameters  needed  to  set  up  the  various  sub-
systems it uses, as well as parameters relevant only to ModularBreeder (for example, 
percentage improvement that FFLNBreeder should achieve on each cycle).

3.4.7  Monitors

Monitoring of the systems are carried out by monitor classes.  An abstract class called 
ActivityMonitor is provided as a super-class that all monitor classes should inherit 
from.  It defines a set of methods that can write information to a file.  These methods 
are called by its sub-classes with information needed for the monitoring.  Monitoring 
of a  specific  property can either  be to a  given filename,  or a general  file  can be 
specified for the monitoring of all properties (providing they are switched on).

Figure 3.11: The ActivityMonitor class, and some implementations of it

The switching of the monitoring is done in the monitor class, rather than in the class 
you are monitoring.  This is done to localise control to the specific monitor class thus 
preventing unnecessary code in the class being monitored.  

Classes that can be monitored are initialised with a new ActivityMonitor sub-class 
whenever they are instantiated. The monitor class defines a set of register methods. 
They take some arguments and write them to a file along with comments, provided a 
file was previously specified.  The class being monitored calls all register methods 
that are defined on the monitor.  The monitor does nothing until one of its methods is 
called to switch the monitoring of something on.  

If a new property is to be monitored, all that is required is a corresponding register 
method in the monitor class.  Calls to the method from the class being monitored will  
allow monitoring to take place.

3.4.8  Testers

There are a number of classes that I refer to as tester classes.  These are pre-compiled 
classes, written in order to test the correctness of existing classes.  This is necessary 
before they can be extended, or used, by other classes.  These tester classes all define 
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a main method, which is called to run the various tests.  These entail instantiating the 
classes being tested, and calling their methods with a variety of different arguments. 
The responses of the methods are output to the screen, to allow them to be verified.

3.4.9  Summary of Design

The use of abstract classes is a very powerful mechanism.  New classes can be written 
to extend an abstract class, in order to provide different algorithms and behaviours. 
No changes are required by any of the classes that use the abstract class.  For instance, 
if  a  new  connectivity-pattern  is  needed,  then  a  class  is  created  that  extends 
ConnectivityPattern.  ConnectedNode (that uses ConnectivityPattern) does not have 
to change, and hence neither does FeedForwardLayeredNetwork.  This applies to all 
of the abstract classes, and the classes that use them.  

Abstract classes were written for all operations where there is a range of possible 
implementations.  This serves to enforce a specification that the algorithms have to 
adhere to.  It provides a framework for implementing new algorithms in the future.

The use of an object-oriented language makes structural changes a lot easier to handle 
than  conventional  imperative  programming  languages.  Every  structural  item  is 
implemented  as  a  class.   When a  new part  of  the  structure  is  needed,  such as  a 
connection, it is simply instantiated as an object.  The structure of a system is changed 
by simply adding or removing references to those objects.  Of course, this still has to 
be done in an organised manner.  

3.5  Interface

The first interface was implemented as a simple command line program.  The user is 
presented with a list of prompts, asking for various parameters.  The program first 
prompts for information needed to instantiate one of the systems, then for information 
needed for monitoring and training.  The interface is not sufficient to allow detailed 
testing of the systems.  It only prompts for a limited number of parameters, and they 
cannot be changed once they have been entered. 

There  was a  need for  a  better  interface.  The time spent  implementing a  complex 
command line interface could be better spent implementing a graphical interface.  The 
Swing components (see section 1.5) made the task of writing a graphical interface 
relatively easy.  

The  graphical  interface  has  several  advantages  over  the  simple  command  line 
program.  It is far more flexible, allowing more of the parameters to be changed.  The 
use of the Swing classes makes it easy to add graphical components that represent a 
parameter, or method.  This means that as the systems grow, or different parameters 
need to be controlled, the interface can easily be extended alongside.

Figure 3.12 shows an example of one of the 3 main system panels.  The parameters 
are entered (although default values are provided), and the “set” method button is 
pressed, to instantiate the system.  This presents buttons for the methods defined on 
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the class.  Currently, the methods available are only those which were necessary for 
the testing of the systems.  New buttons can be added easily in the future.  
The method buttons present the user with further options, as shown in figures 3.13, 
and 3.14.

Figure 3.12: The Graphical Interface’s FFLNBreeder system panel

           Figure 3.13: The FeedForwardLayeredNetworkMonitor monitor methods panel
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Figure 3.14: The FFLNBreeder train method panel

3.6  Packages

My program code is split into 6 packages.  The package name indicates the operation 
of the classes belonging to it.  The packages are as follows, 

1 networkPackage:  This contains the classes relating to the neural network systems, 
i.e. FeedForwardLayeredNetwork, ModularNetwork, and any classes they use.

2 breederPackage:   This contains all classes related to the breeding systems.  These 
are FFLNBreeder, ModularBreeder, and the classes they use.

3 monitorPackage:  This has all of the monitor classes in it.
4 testerPackage:  This contains the tester classes.
5 interfacePackage:  This contains both the command-line, and graphical interface 

classes.  The command-line interface is  implemented using just  a single class. 
Classes implemented for the graphical interface make up the rest of this package.  

6 simpleIO:  This is a modification of a package written by Chris Kirkham, for use 
doing simple IO tasks.  It is used by the interfaces.  I have added a new class 
called MyText.  This is a modification of the existing class Text, and is identical 
except that rather than catching NumberFormatException exceptions and printing 
an error message, they are thrown.  This is needed so that if a number supplied by 
the user is of the wrong format, the class using MyText can provide it’s own error 
message.
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4. TESTING

The systems must be tested for two reasons:  

1. Correctness: To make sure all algorithms are working correctly.
2. Performance: To check the effectiveness of the algorithms.

Correctness tests were carried out throughout the production of the systems.  These 
were necessary to ensure that the classes were working correctly, before being used or 
extended by other classes.  The correctness testing was first carried out using the pre-
compiled tests, provided in the testerPackage package.  Later, the interfaces could be 
used to allow flexible testing of the complete systems.  All systems have been tested 
for correctness, and shown to be reliable.

Some performance tests were carried out, giving a first indication as to the success of 
the systems.  However, the running time of the systems is very high.  Only a small  
amount  of  tests  were  able  to  be  ran.   Further  testing  is  necessary  to  produce 
conclusive results. 

4.1  Choice of Task

The choice of task is important for both correctness and performance testing.  It must 
allow all aspects of the systems to be tested.  In other words, all algorithms must be 
invoked,  and  a  range  of  behaviours  made  possible.   This  leads  to  a  number  of 
requirements.

1. The task must be sufficiently complex.  This is to ensure that the systems have to 
adapt to perform the task, rather than being initially capable of performing it.  

2. The task must have some modularity to it.  This means that within the task, there  
exist sub-tasks, for which if solutions are found, the complete task can be performed. 

 3.  It  should be a  tried and tested task,  for which a  capable network structure is 
known.   This  is  for use verifying that  good structures  are  being produced by the 
genetic algorithm, and the modular breeder.

4.2  What-Where Vision Task

This  task  fulfils  all  of  the  requirements  listed  above.  It  consists  of  an  object-
recognition task (the “what” task), and a spatial localisation task (the “where” task). 
The definition of the what-where task,  and the data  used to  define it,  are  from a 
program (and the notes therein) written by my project supervisor, Jonathan Shapiro. 
It is similar to the task used by Jacobs, Jordan, and Barto (1991) [2], and the similarity 
should allow suitable expert network structures to be inferred.  
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4.2.1  The Task

The input is a set of 64 binary numbers.  This represents an 8 x 8 matrix.  The matrix 
holds values of 0, except for where a pattern is present.  The “what” sub-task asks to 
distinguish the two following patterns,

1 1 from  1 0
1 1  0 1

The “where” sub-task is to identify which of the four quadrants in the input matrix the 
pattern is.  

There are three output bits.  The first gives the solution to the “what” sub-task – 0 
indicates the first pattern, and 1 indicates the second pattern.  The last two are for the 
4 possibilities of the “where” sub-task.

The  outputs  of  the  neural  networks  are  real  numbers.   An  output  of  <0.5  will 
represents a 0, and an output of ¿ 0.5 will represent a 1.

4.2.2  The Suitable Structures

I believe that the two following networks are the equivalent to the ones presented in 
[2].  One network is smaller than the other.

The  smaller  network  has  a  single  hidden  layer  containing  6  nodes,  with  full-
connectivity.  The larger network has 12 hidden nodes rather than 6.  If the results 
obtained in [2] provide an accurate indication, this should exhibit a faster learning 
response.

The modular network will consist of three experts, based on the ones used in [2].  The 
first two are the networks described above.  The third will have no hidden layers, and 
so all inputs will connect to all outputs.  

Figure 4.1: The suitable network structures
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   Network Type      Structure

Neural network 1    64 → 6 → 3
Neural network 2    64 → 12 → 3

Modular network 1

Expert 1    64 → 12 → 3
Expert 2    64 → 6 → 3
Expert 3    64 → 3
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 The network architectures presented above must be tested, and verified to be suitable. 
Once they have been verified they can be used as a basis for comparison, with both 
the structures generated by the genetic algorithm, and the modular network breeder.

4.2.2  Crosstalk

A problem  affecting  network  performance  when  faced  with  a  modular  task,  is 
crosstalk [2].  There are two types, temporal and spatial.  Temporal crosstalk occurs 
when  a  network  is  trained  to  perform different  tasks,  at  different  times.   Spatial 
crosstalk occurs when a network is trained to perform different tasks at the same time. 
We are only concerned with spacial crosstalk, as it’s a problem present in the what-
where task used.  The modular network should be more resilient to both types of 
crosstalk.  This is due to its ability to choose which experts are most suitable, and 
train them in proportion to their error by adjusting their desired output (see section 
2.2.2, equation 2.17). 

4.3  Results

All systems have been tested on the what-where problem described previously.  

1. The neural  networks  were trained on the task.   This  serves  to  verify that  the 
network structures presented in section 4.2.2 can perform adequately.  

2. A modular network was similarly trained.  This provides a comparison with the 
performance of a normal neural network.

3. The genetic algorithm was tested.  The tests show what changes the populations 
went through.

4. The modular breeder was tested.  This serves to show whether suitable network 
structures were being produced, and if so, how the system performs.

50 patterns  are  presented  to  all  systems for  training.   The  number  of  epochs  (or 
cycles) of a system is plotted against the errors of the system.  This gives a good 
indication of the learning speed.  The errors were calculated using different methods, 
as described in chapter 2, and so the graphs will have different properties.  This does 
not matter, as we are only interested in the number of epochs taken to reach a steady 
state, not how that state was reached.  In order to test a system, it is presented with 
another  50  different  patterns.   The  percentage  of  correct  answers  gives  the 
generalisation ability. 

 The test parameters are provided in appendix C.

4.3.1  Neural Network Tests

Both neural networks structures (described in section 4.2.2) were tested. 

1) Test ww1-network-2: Network 1 is tested.

The error settled on 0 in 500 epochs.  See figure 4.2.  The network got 68% of the  
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testing patterns correct.

2) Test ww1-network-3: Network 2 is tested.

The error reduced to 0 within 400 epochs.  See figure 4.2.  The network only got  
62% of testing patterns correct.  

Network 1       Network 2

Figure 4.2: Learning rates of the networks (difference error)

These tests have shown that both networks can learn to perform the task, but display 
poor ability to generalise.  The larger network has a faster learning rate, as expected, 
but surprisingly is less able to generalise.

4.3.2  Modular Network Test

1) Test ww1-modular-4: 

Figure 4.3: Learning rate of the modular network (sum-squared error)
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The error settles at  ~425 epochs.  See figure 4.3.  The generalisation ability is 
considerably better, with 82% of the testing patterns correct. 

The  system  displays  a  faster  learning  speed  than  the  smaller  of  the  two  neural 
networks, but not the larger.  The good generalisation of the network indicates that the 
modular network is more robust when faced with crosstalk than the neural networks, 
as expected.

4.3.2  Genetic Algorithm Tests

Three tests were performed.  The second two were performed to try to improve on the 
results of the first.  The random initialisation of networks was prevented from creating 
any of the competent network structures (as suggested in section 4.2.2).  All three of 
the tests had to be terminated before they had finished.  After ~12 hours they were 
assumed not to be working adequately.   As the program was terminated early,  the 
performance on the testing patterns could not be determined.

1) Test ww1-breeder-1: 

Terminated after 30 generations.  It uses LinearEvaluator as the fitness evaluator, 
and MutateAll as the mutation algorithm

The  fitness  seemed  to  be  tending  toward  a  value  of  0.14.   See  figure  4.4. 
However, at around generation 19 it suddenly dropped.   This can be explained by 
looking at the average size of the networks generated, shown in figure 4.5.

It seems that the average size dropped suddenly on generation 18.  The average 
size in generation 19 is 1, which means there must have been only one population 
member containing a hidden layer with a node in it.  No structures were capable 
of performing the task, leading to the drop in fitness.  The increase in the sizes 
generated from generation 20 onwards, follows the increase in fitness.  The test 
was terminated before desired fitness could be reached.

Figure 4.4: Changes in best fitness      Figure 4.5: Average sizes of networks
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2) Test ww1-breeder-4: 

Terminated  after  30  generations.   This  changes  the  fitness  evaluator  to 
SquareEvaluator to attempt to select better members.  The mutation algorithm has 
been changed to MutateNodes, to try and prevent such large structural changes. 
The  mutation  percentage  has  been  increased  to  allow  a  number  of  (smaller) 
structural variations.  Finally, the fitness threshold has been reduced in an attempt 
to allow the system to finish naturally. 

Figure 4.6: Change in best fitness      Figure 4.7: Average sizes of networks

The fitness of the best network rises steadily from generation 10 onwards, shown 
in figure 4.6.  A look at the average network sizes (figure 4.7) show that they 
decreased  in  size,  until  from  generation  10  onwards  there  were  no  networks 
present containing any hidden nodes.  

No suitable network structures were produced by the three genetic algorithm tests. 
The fitness was shown to rise in both tests.  It  is  possible that suitable structures 
would  have  been  produced  had  the  systems  continued  running.   However,  they 
involved different changes in network size – test 1 showed the sizes increasing, while 
test 2 showed them decreasing.  The sharper rise of fitness in test 1 compared to the 
test 2 indicates that network structures averaging a size of 4 are most appropriate. 
There  is  a  possibility  that  the  network  fitness  improved due  to  only the  network 
training.

4.3.3  Modular Breeder

Three tests were run.  The output from test 3 is supplied as an example in appendix B.

1)  Test ww1-modbreeder-3:

A suitable modular network structure was returned after only two cycles.  The 
patterns were split into 3 sub-sets.  The genetic algorithms did not need to make 
any new populations of experts.  This indicates that some of the experts in the 

31

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5



Chapter 4 Testing

initial population must have already had suitable structures, and the system simply 
picked them out. 

 

Figure 4.8: Modular breeder results

Each modular  network in  the  system is  trained for  100 epochs per  cycle.  The 
genetic algorithm trains for 100 epochs per generation.  So the system learnt the 
task  on  the  equivalent  of  300 epochs  per  modular  network.   This  is  less  than 
required  for  the  modular  network  tested  above  in  section  4.3.2,  but  the 
generalisation of the network is worse.

2)  Test ww1-modbreeder-4:

This test returned a suitable network after only a single cycle.  The task was not 
partitioned.  Expert 3 from the first modular network in the population was best on 
all inputs patterns, and so only a single genetic algorithm was started.  Perhaps 
because  of  the  increased  difficulty  of  performing  the  whole  task,  the  genetic 
algorithm took 2 generations until a suitable expert network was returned.  

Figure 4.9: Modular breeder results

Each modular network was trained in the equivalent of 300 epochs.  The final 
network  learns  faster,  and  can  generalise  better  than  the  modular  network  in 
section 4.3.2.  
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Cycle 1: 
number of pattern sub-sets produced = 3
number of patterns in each sub-set  = 18, 26, 6

Cycle 2:
number of pattern sub-sets produced = 3
number of patterns in each sub-set = 27, 10, 13

The final network is correct in 74% of the testing patterns.  
It consists of 3 experts, each with no hidden layers.

Cycle 1:
number of pattern sub-sets produced = 1

The final network is correct on 82% of the testing patterns. 
 It consists of a single expert, with no hidden layers.
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3)  Test ww1-modbreeder-6
 

This test ran for two cycles.  In the first cycle, each of the two genetic algorithms 
needed two generations to reduce the expert error by the desired amount.  In the 
second  cycle,  only a  single  generation  was  needed,  before  an  expert  with  the 
desired error was produced.  The task was partitioned into 2 near equal sized sets.

Figure 4.10: Modular breeder results

The final  network got  84% of the testing patterns  correct.   It  consisted of  two 
experts, each containing no hidden layers.

The network was trained in the equivalent of 500 epochs.  While this number of 
epochs is large, the generalisation ability is the best yet.  

The modular networks produced by the tests can perform as well as, or better than, the 
structures  presented  in  section  4.2.2.   It’s  worth  noting  that  the  best  results  were 
produced by the third test that partitioned the tasks into two near equal sets.

All three of the modular networks returned consist of experts with no hidden layers. 
This implies,
1. The what-where task specified can be partitioned into sub-tasks that only require 

encoding of the inputs, and no processing layer.   
2. The networks theorised in section 4.2.2 are not good structures.  Whilst the tests 

showed that they can perform the tasks, they are larger than necessary.
3. The second genetic algorithm test may have been producing the best structures 

(i.e. networks with no hidden layers).

The  production  of  networks  containing  no  hidden  nodes  is  a  surprise.   Further 
investigation is  required to determine whether  it  is  possible  for such structures to 
perform the task.  
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Cycle 1:
number of pattern sub-sets produced = 2
number of patterns in each sub-set = 26, 25

Cycle 2:
number of pattern sub-set produced = 2
number of patterns in each sub-set = 27, 23

The final network is correct on 84% of the testing patterns.  
It consists of two experts, each containing no hidden layers.
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5. CONCLUSIONS

This  report  has followed the development  a  system to generate  the structure of  a 
modular network.  

5.1  Achievements

The project has achieved a number of goals.  The implementations of the sub-systems 
are  correct,  and  largely  successful.   The  integration  into  a  complete  system has 
produced good results, although it does not exhibit all desired behaviour.

The classes that define the systems can be reused in other Java programs.  They are 
easy to set up and use.  Above all, they are very flexible.  Every system has a method 
to alter nearly every one of its properties.  See appendix A for a full listing of the 
methods.

A framework exists  to allow different  algorithms to be implemented in the future 
without needing any alteration to the existing code.

5.1.1  Sub-systems

In order to implement the overall modular breeder system, a number of other systems 
were developed.  These systems make up the bulk of the project.  They achieved 
different degrees of success.  They are as follows,

1. The implementation of a neural network and a training algorithm was successful. 
The training algorithm, Backpropagation, has been shown to be capable of training a 
neural  network.   A number  of  methods  have  been  written  that  can  successfully 
manipulate the structure of the network.   

2.  The  implementation  of  a  modular  network  and  the  main  training  algorithm, 
Winner-takes-all, was successful.  The algorithm has been shown to produce training 
results that are superior to that of the neural networks tested.  

3.  The implementation  of  a  genetic  algorithm has  been shown to  work correctly, 
although not effectively.   The crossover and mutation algorithms provided are the 
likely cause.  

5.1.2  Modular network breeder

The main  aim of  this  project  was to  produce a  system capable of  generating  the 
structure of a modular network.   Preliminary tests  indicate that this aim has been 
achieved. The modular network breeder returned a suitable network on all of these 
tests, which exhibited better performance than all the other networks tested.  There is 
no  user  design  of  the  structure  of  the  network,  only  decisions  as  to  what  size 
limitations to impose on the initial population.
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However, while the system has been shown to produce the correct structure, it does 
not make effective use of the genetic algorithm.  The genetic algorithm simply acts as 
a  further  training  and  selection  procedure,  without  making  beneficial  structural 
changes.
  
The networks structures generated proved very different from the predicted structures. 
This illustrates a point made in section 1.2 – the structure generated served to give a 
greater understanding of the problem.

5.1.3  Interface

A simple  command-line  interface  was  developed,  but  proved  too  limited  for  the 
testing of the sub-systems.  To provide more control over parameters,  a graphical 
interface was written.  This implementation greatly improves the ease at which the 
systems can be tested.  The addition of new method buttons can be done with ease, if 
there is a desire to add greater control.

5.2  Criticisms

While  I  wanted experience in  writing all  of  the sub-systems,  it  would have been 
beneficial for me to make use of an existing neural network program.  I felt it was 
necessary  to  implement  the  neural  network  to  provide  the  desired  structural 
operations.   However,  I  underestimated  the  complexity  of  such  a  task  and  in 
retrospect it would have been better to compromise by using an existing program. 
This would have allowed me to spend more time on the implementation of the genetic 
algorithm.  A large amount of evolutionary techniques remain unexplored.  I believe a 
more effective system would have been produced if this had been possible.

The performance testing of the systems is incomplete.  It serves only as an initial 
indication of performance.  The neural network and modular network were shown to 
work,  but  optimal  parameters  remain  to  be  found.   A single  run  of  the  genetic 
algorithm can take over 24 hours.  The modular breeder was also slow, due to its use 
of the genetic algorithm.  This meant a great deal of time was needed for correctness 
testing, leaving less time to test performance. 

Fast  system running  times  were  not  stated  as  a  requirement.   However,  a  faster 
running time is desirable, if only to permit quicker testing.

5.3  Future Work

5.3.1  Improvements

It would have been useful for the network training algorithms to use a validation set to 
determine  when  training  should  stop.   This  will  lead  to  better  generalisation 
performance.  Also, there is no control of when the training should stop, other than the 
number of epochs.  It would be useful to allow the training to stop when a desired 
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error has been reached. 

The gating network used by the modular network should be allowed to have different 
inputs  than  the  ones  to  the  modular  network  itself.   This  would  produce  greater 
flexibility, allowing the gating of the experts to be dependent on different inputs than 
those defining the task.

The interface is interrupted by any running processes, and is not refreshed until the 
process has finished.  This is inconvenient when the parameters that were set need to 
be  checked.   This  could  be  overcome  by making  every  method  called  from the 
interface run in its own thread.  This would also allow the method to be interrupted, or 
terminated when desired. 

5.3.2  Testing

The correctness  testing  of  the systems served only to  verify that  their  non-public 
methods function properly when called with expected arguments.  This is sufficient to 
allow the systems to function reliably,  as the possible  values  sent  to  methods are 
known.  Future testing of these methods is required to ensure that they can cope with 
unusual values.  The public methods, available for use in classes in any packages, 
have been tested for a greater range of arguments.  This is because they are intended 
for use by people with no knowledge of the implementation details.  The non-public 
methods will only be of use to people who wish to extend the functionality.  This is 
not suggested until a complete technical study has been carried out.

As mentioned previously, performance testing was limited by the running time of the 
systems.   A range  of  tests  need  to  be  performed  on  the  neural  network  and  the 
modular  network,  to  find  optimal  parameters  –  the  methods  implemented  are 
common, and should work well.  More importantly, the genetic algorithm must be 
further tested in order to determine what algorithms are ineffective.  New ones should 
be written, and different combinations tried.  The individual algorithms used by the 
genetic algorithm are simple, and new ones can be written with ease.  It is more the 
combination of algorithms that present the difficulty.   Once more effective neural 
network  generation  is  possible  from  the  genetic  algorithm,  the  modular  network 
breeder can be properly tested on a harder task than the one previously presented in 
this report.

5.3.3 Extensions

Methods to load and save a neural network or modular network would be useful. 
Currently, the graphical interface requires the structure of the experts in a modular 
network to be specified.  Load and save methods would prevent this being necessary. 
They should be easy to implement, as serialization of objects to disk is part of the 
functionality of Java.

A large range of different neural network architectures and their associated training 
algorithms  can  be  implemented.   Some  examples  are  Hopfield  nets  [8  p234],  or 
Recurrent networks [7 p119].
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There are many different fitness, selection, crossover, and mutation algorithms for use 
with the genetic  algorithm that  can  be developed.   Some examples  that  could be 
useful are niching [11], and fitness sharing [11]. 

Some performance gathering tools would be useful.  This is to allow the performance 
of the networks to be easily retrieved.  Currently, the files generated by the monitors 
are read into MATLAB as matrices.  Work has to be done editing the matrices in order 
to display certain results.   It  would be useful to  implement  a set  of methods that 
automatically format the monitor data.  These can be implemented by the monitor 
classes themselves.  
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APPENDIX A – Public class and method listing

This appendix lists all public classes and methods needed to make full use of the 
algorithms provided.  It is by not a full listing of all classes or the methods they 
provide.

1.  networkPackage

public class AllButOne extends ConnectivityPattern implements Serializable
public AllButOne(int _numNodeToBeLeftOut)
public ConnectivityPattern copy()

public class BackPropagation extends FFLNTrainingAlgorithm implements Serializable
public BackPropagation(double _constant, DoubleFunction _function)
public BackPropagation(DoubleFunction _function)
public BackPropagation(double _constant)
public BackPropagation()
public void setConstant(double _constant)
public double getConstant()
public void setFunction(DoubleFunction _function)
public DoubleFunction getFunction()
public void trainNetwork(FeedForwardLayeredNetwork _network, double [][] _inputs, double 

[][] _desiredOutputs, int _numEpochs)
public void setMonitor(BackPropagationMonitor _monitor)

public BackPropagationMonitor getMonitor()
public FFLNTrainingAlgorithm copy()

public class DifferentiatedSigmoid extends DoubleFunction implements Serializable
public DifferentiatedSigmoid()
public DifferentiatedSigmoid(double _scalingConstant)
public DoubleFunction copy()

public class DivideFunction extends Function implements Serializable
public Function copy()

public class ErrorAdjust extends MNTrainingAlgorithm implements Serializable
public ErrorAdjust(double _constant)
public ErrorAdjust()
public void setConstant(double _constant)
public void trainNetwork(ModularNetwork _network, double [][] _inputs, double [][] 

_desiredOutputs, int _numEpochs)
public MNTrainingAlgorithm copy()
public void setMonitor(ErrorAdjustMonitor _monitor)
public ErrorAdjustMonitor getMonitor()

public class ExponentialFunction extends Function implements Serializable
public Function copy()

public class FeedForwardLayeredNetwork extends Network implements Serializable
public FeedForwardLayeredNetwork(int _numInputs, int [] _numNodesPerHiddenLayer, 

Function [][] _nodesFunction, ConnectivityPattern [][] _nodesConnectivityPattern, 
int _numOutputs, Function [] _outputsFunction, ConnectivityPattern [] 
_outputsConnectivityPattern, FFLNTrainingAlgorithm _trainingAlgorithm)

public FeedForwardLayeredNetwork(int _numInputs, int [] _numNodesPerHiddenLayer, 
Function [] _nodesFunction, ConnectivityPattern [] _nodesConnectivityPattern, int 
_numOutputs, Function _outputsFunction, ConnectivityPattern 
_outputsConnectivityPattern, FFLNTrainingAlgorithm _trainingAlgorithm)
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public FeedForwardLayeredNetwork(int _numInputs, int [] _numNodesPerHiddenLayer, int 
_numOutputs, Function _function, ConnectivityPattern _connectivityPattern, 
FFLNTrainingAlgorithm _trainingAlgorithm)

public FeedForwardLayeredNetwork(int _numInputs, int [] _numNodesPerHiddenLayer, int 
_numOutputs, ConnectivityPattern _connectivityPattern)

public FeedForwardLayeredNetwork(int _numInputs, int _numOutputs)
public int getNumberOfInputs()
public int getNumberOfOutputs()
public int getNumberOfLayers()
public int getNumberOfNodes()
public int getNumberOfActiveNodes()
public int getNumberOfNodesInLayer(int _layerNumber)
public int getNumberOfActiveNodesInLayer(int _layerNumber)
public double [] getNetworkOutput(double [] inputValues)
public double [] getOutputActivations()
public double getOutputActivation(int _outputNumber)
public double getNodeActivation(int _layerNumber, int _nodeNumber)
public void insertLayerAt(int _insertPosition)
public void addLayer()
public void removeLayer(int _layerNumber)
public int [] getInputConnectionsToLayerAbove(int _inputNumber)
public boolean nodeActive(int _layerNumber, int _nodeNumber)
public void activateNode(int _layerNumber, int _nodeNumber)
public void deactivateNode(int _layerNumber, int _nodeNumber)
public void addNode(int layerNumber, Function function, ConnectivityPattern 

_connectivityPattern)
public void addNode(int layerNumber, ConnectivityPattern _connectivityPattern)
public void addNode(int layerNumber, Function function)
public void addNode(int layerNumber)
public void addNode(Function function, ConnectivityPattern _connectivityPattern)
public void addNode(Function function)
public void removeNode(int _layerNumber, int _nodeNumber)
public Function copyHiddenNodeFunction(int _layerNumber, int _nodeNumber)
public int [] getHiddenNodeConnectionsToLayerAbove(int _layerNumber, int _nodeNumber)
public ConnectivityPattern copyHiddenNodeConnectivityPattern(int _layerNumber, int 

_nodeNumber)
void setHiddenNodeConnectivityPattern(int _layerNumber, int _nodeNumber, 

ConnectivityPattern _pattern)
public int getNumberOfHiddenNodeConnections(int _layerNumber, int _nodeNumber)
public int [] getHiddenNodeConnections(int _layerNumber, int _nodeNumber)
public void setHiddenNodeConnections(int _layerNumber, int _nodeNumber, int [] 

connections)
public int getHiddenNodeConnection(int _layerNumber, int _nodeNumber, int 

_connectionNumber)
public void addConnectionToHiddenNode(int _layerNumber, int _nodeNumber, int 

connection)
public boolean removeConnectionFromHiddenNode(int _layerNumber, int _nodeNumber, int 

_connectionNumber)
public double [] getHiddenNodeWeights(int _layerNumber, int _nodeNumber)
public boolean setHiddenNodeWeights(int _layerNumber, int _nodeNumber, double [] 

weights)
public double getHiddenNodeWeight(int _layerNumber, int _nodeNumber, int 

_connectionNumber)
public boolean setHiddenNodeWeight(int _layerNumber, int _nodeNumber, int 

_connectionNumber, double _weight)
public double getHiddenNodeThreshold(int _layerNumber, int _nodeNumber)
public void setHiddenNodeThreshold(int _layerNumber, int _nodeNumber, double 

_threshold)
public Function copyOutputFunction(int _outputNumber)
public ConnectivityPattern copyOutputConnectivityPattern(int _outputNumber)
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public void setOutputConnectivityPattern(int _outputNumber, ConnectivityPattern _pattern)
public int getNumberOfOutputConnections(int _outputNumber)
public int [] getOutputConnections(int _outputNumber)
public void setOutputConnections(int _outputNumber, int [] _connections)
public int getOutputConnection(int _outputNumber, int _connectionNumber)
public void addConnectionToOutputNode(int _outputNumber, int _connection)
public boolean removeConnectionFromOutputNode(int _outputNumber, int 

_connectionNumber)
public double [] getOutputWeights(int _outputNumber)
public boolean setOutputWeights(int _outputNumber, double [] _weights)
public double getOutputWeight(int _outputNumber, int _connectionNumber)
public double getOutputThreshold(int _outputNumber)
public void setOutputThreshold(int _outputNumber, double _threshold)
public void train(double [][] _inputs, double [][] _desiredOutputs, int _numEpochs)
public void setTrainingAlgorithm(FFLNTrainingAlgorithm algorithm)
public FFLNTrainingAlgorithm copyTrainingAlgorithm()
public void setMonitor(FeedForwardLayeredNetworkMonitor _monitor)
public FeedForwardLayeredNetworkMonitor getMonitor()

public class FullConnectivity extends ConnectivityPattern implements Serializable
public ConnectivityPattern copy()

public class ModularNetwork extends Network implements Serializable
public ModularNetwork(int _numInputs, int _numOutputs, Network [] _networks, 

MNTrainingAlgorithm _trainingAlgorithm)
public ModularNetwork(int _numInputs, int _numOutputs, Network [] _networks)
public double [] getNetworkOutput(double [] _inputs)
public int getNumberOfInputs()
public int getNumberOfOutputs()
public int getNumberOfNetworkModules()
public Network getNetworkModule(int _networkNumber)
public Network [] getNetworkModules()
public void addNetworkModule(Network network)
public void removeNetworkModule(int _networkNumber)
public double [] getWeightsOfSoftmaxNode(int _nodeNumber)
public void setWeightsOfSoftmaxNode(int _nodeNumber, double [] _weights)
public double [] getModuleWeights(double [] _inputs)
public double [] getModuleWeights()
public double getModuleWeight(int _numModule, double [] _inputs)
public double getModuleWeight(int _numModule)
public void setTrainingAlgorithm(MNTrainingAlgorithm algorithm)
public MNTrainingAlgorithm getTrainingAlgorithm()
public void train(double [][] _inputs, double [][] _desiredOutputs, int _numEpochs)
public void setMonitor(ModularNetworkMonitor _monitor)
public ModularNetworkMonitor getMonitor()

public class NullFunction extends Function implements Serializable
public Function copy()

public class OnlyOne extends ConnectivityPattern implements Serializable
public OnlyOne(int _numOfOnlyNode)
public ConnectivityPattern copy()

public class OnlySome extends ConnectivityPattern implements Serializable
public OnlySome(int [] theOnes)
public ConnectivityPattern copy()

public class PatternFileReader
public double [][] convertFile(int _numPatterns, int _numElements, String _filename) throws 

FileNotFoundException, IOException
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public double [][] convertFile(int _numPatterns, int _numElements, File _file) throws 
FileNotFoundException, IOException

public class SigmoidFunction extends Function implements Serializable
public SigmoidFunction(double _scalingConstant)
public SigmoidFunction()
public Function copy()

public class SoftMaxFunction extends Function implements Serializable
public Function copy()

public class SumFunction extends Function implements Serializable
public Function copy()

public class UserDefinedConnectivity extends ConnectivityPattern implements Serializable
public UserDefinedConnectivity()
public ConnectivityPattern copy()

public class WinnerTakesAll extends MNTrainingAlgorithm implements Serializable
public WinnerTakesAll(double _memoryConstant, double _improvConstant, double 

_adjustConstant)
public WinnerTakesAll()
public void setConstants(double _memoryConstant, double _improvConstant, double 

_adjustConstant)
public void trainNetwork(ModularNetwork _network, double [][] _inputs, double [][] 

_desiredOutputs, int _numEpochs)
public MNTrainingAlgorithm copy()
public void setMonitor(WinnerTakesAllMonitor _monitor)
public WinnerTakesAllMonitor getMonitor()

2.  breederPackage

public class CrossoverOperation1 extends CrossoverOperation
public void setMonitor(CrossoverOperation1Monitor _monitor)
public CrossoverOperation1Monitor getMonitor()

public class FFLNBreeder
public FFLNBreeder(FeedForwardLayeredNetwork [] _initialPopulation, CrossoverOperation 

_crossoverOp, FitnessEvaluator _fitnessOp, SelectionAlgorithm _selectionOp, 
MutationAlgorithm _mutationOp)

public FFLNBreeder(int _numInputs, int _numOutputs, int _size, int _maxNumLayers, int 
_maxNumNodesPerLayer, CrossoverOperation _crossoverOp, FitnessEvaluator 
_fitnessOp, SelectionAlgorithm _selectionOp, MutationAlgorithm _mutationOp)

public int getNumberOfInputs()
public int getNumberOfOutputs()
public int getPopulationSize()
public FeedForwardLayeredNetwork breed(int _numEpochs, double _fitnessThreshold, int 

_percentageReplaced, int _mutationRate, double [][] _evaluationInputs, double [][] 
_evaluationOutputs)

public FeedForwardLayeredNetwork [] getPopulation()
public FeedForwardLayeredNetwork getMember(int _networkNumber)
public FeedForwardLayeredNetwork getBestNetwork()
public int bestMember()
public double getMembersFitness(int _networkNumber)
public double [] getMembersFitnesses()
public MutationAlgorithm getMutationAlgorithm()
public void setMutationAlgorithm(MutationAlgorithm _op)
public CrossoverOperation getCrossoverOperation()
public void setCrossoverOperation(CrossoverOperation _op)
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public FitnessEvaluator getFitnessEvaluator()
public void setFitnessEvaluator(FitnessEvaluator _evaluator)
public SelectionAlgorithm getSelectionAlgorithm()
public void setSelectionAlgorithm(SelectionAlgorithm _algorithm)
public void setMonitor(FFLNBreederMonitor _monitor)
public FFLNBreederMonitor getMonitor()

public class FitnessProportionate extends SelectionAlgorithm
public void setMonitor(FitnessProportionateMonitor _monitor)
public FitnessProportionateMonitor getMonitor()

public class InverseErrorEvaluator extends FitnessEvaluator
public InverseErrorEvaluator(double _power)
public void setMonitor(InverseErrorEvaluatorMonitor _monitor)
InverseErrorEvaluatorMonitor getMonitor()

public class LinearEvaluator extends InverseErrorEvaluator
public LinearEvaluator()

public class ModularBreeder
public ModularBreeder(int _numInputs, int _numOutputs, int _numModNets, int 

_initialNumModules, int _maxNumLayers, int _maxNumNodesPerLayer)
public ModularNetwork breedModularNetwork(double [][] _inputs, double [][] 

_desiredOutputs, int _numModularEpochs, int _numBreederEpochs, double 
_desiredError, int _percentageImprovement,  double _backpropStepConstant, double 
_memoryConstant, double _stepConstant, double _improvementConstant, int 
_percentageReplaced, int _percentageMutated)

public void setMonitor(ModularBreederMonitor _monitor)
public ModularBreederMonitor getMonitor()

public class MutateAll extends MutationAlgorithm
public void setMonitor(MutateAllMonitor _monitor)
public MutateAllMonitor getMonitor()

public class MutateAllButConnections extends MutationAlgorithm
public void setMonitor(MutateAllMonitor _monitor)
public MutateAllMonitor getMonitor()

public class MutateConnections extends MutationAlgorithm
public void setMonitor(MutateConnectionsMonitor _monitor)
public MutateConnectionsMonitor getMonitor()

public class MutateNodes extends MutationAlgorithm
public void setMonitor(MutateNodesMonitor _monitor)
public MutateNodesMonitor getMonitor()

public class NodeDeactivationMutation extends MutationAlgorithm
public void setMonitor(NodeDeactivationMutationMonitor _monitor)
public NodeDeactivationMutationMonitor getMonitor()

3.  monitorPackage

public class BackPropagationMonitor extends ActivityMonitor 
public BackPropagationMonitor(String _pathname) throws IOException
public BackPropagationMonitor()
public boolean monitorAll(boolean bool)
public boolean monitorEpochs(String _pathname) throws IOException
public boolean monitorEpochs(boolean bool)
public boolean monitorInputs(String _pathname) throws IOException
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public boolean monitorInputs(boolean bool)
public boolean monitorOutputs(String _pathname) throws IOException
public boolean monitorOutputs(boolean bool)
public boolean monitorErrors(String _pathname) throws IOException
public boolean monitorErrors(boolean bool)
public boolean monitorWeights(String _pathname) throws IOException
public boolean monitorWeights(boolean bool)
public boolean monitorThresholds(String _pathname) throws IOException
public boolean monitorThresholds(boolean bool)
public boolean monitorNetworkErrors(String _pathname) throws IOException
public boolean monitorNetworkErrors(boolean bool)

public class CrossoverOperation1Monitor extends ActivityMonitor
public CrossoverOperation1Monitor(String _pathname) throws IOException
public CrossoverOperation1Monitor()
public boolean monitorAll(boolean bool)
public boolean monitorLayers(String _pathname) throws IOException
public boolean monitorLayers(boolean bool)
public boolean monitorCuts(String _pathname) throws IOException
public boolean monitorCuts(boolean bool)
public boolean monitorChildren(String _pathname) throws IOException
public boolean monitorChildren(boolean bool)

public class ErrorAdjustMonitor extends ModularTrainingMonitor 
public ErrorAdjustMonitor(String _pathname) throws IOException
public ErrorAdjustMonitor()

public class FeedForwardLayeredNetworkMonitor extends ActivityMonitor 
public FeedForwardLayeredNetworkMonitor(String _pathname) throws IOException
public FeedForwardLayeredNetworkMonitor()
public boolean monitorAll(boolean bool)
public boolean monitorLayers(String _pathname) throws IOException
public boolean monitorLayers(boolean bool)
public boolean monitorNodes(String _pathname) throws IOException
public boolean monitorNodes(boolean bool)
public boolean monitorWeights(String _pathname) throws IOException
public boolean monitorWeights(boolean bool)
public boolean monitorThresholds(String _pathname) throws IOException
public boolean monitorThresholds(boolean bool)

public class FFLNBreederMonitor extends ActivityMonitor
public FFLNBreederMonitor(String _pathname) throws IOException
public FFLNBreederMonitor()
public boolean monitorAll(boolean bool)
public boolean monitorGenerations(String _pathname) throws IOException
public boolean monitorGenerations(boolean bool)
public boolean monitorBest(String _pathname) throws IOException
public boolean monitorBest(boolean bool)
public boolean monitorFitness(String _pathname) throws IOException
public boolean monitorFitness(boolean bool)
public boolean monitorPopulation(String _pathname) throws IOException
public boolean monitorPopulation(boolean bool)
public boolean monitorNetworks(String _pathname) throws IOException
public boolean monitorNetworks(boolean bool)

public class FitnessProportionateMonitor extends ActivityMonitor
public FitnessProportionateMonitor(String _pathname) throws IOException
public FitnessProportionateMonitor()
public boolean monitorAll(boolean bool)
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public class InverseErrorEvaluatorMonitor extends ActivityMonitor
public InverseErrorEvaluatorMonitor(String _pathname) throws IOException
public InverseErrorEvaluatorMonitor()
public boolean monitorAll(boolean bool)

public class ModularBreederMonitor extends ActivityMonitor
public ModularBreederMonitor(String _pathname) throws IOException
public ModularBreederMonitor()
public boolean monitorAll(boolean bool)
public boolean monitorCycles(String _pathname) throws IOException
public boolean monitorCycles(boolean bool)
public boolean monitorErrors(String _pathname) throws IOException
public boolean monitorErrors(boolean bool)

public class ModularNetworkMonitor extends ActivityMonitor
public ModularNetworkMonitor(String _pathname) throws IOException
public ModularNetworkMonitor()
public boolean monitorAll(boolean bool)
public boolean monitorModules(String _pathname) throws IOException
public boolean monitorModules(boolean bool)
public boolean monitorModuleWeights(String _pathname) throws IOException
public boolean monitorModuleWeights(boolean bool)
public boolean monitorWeights(String _pathname) throws IOException
public boolean monitorWeights(boolean bool)

public class ModularTrainingMonitor extends ActivityMonitor
public ModularTrainingMonitor(String _pathname) throws IOException
public boolean monitorAll(boolean bool)
public boolean monitorEpochs(String _pathname) throws IOException
public boolean monitorEpochs(boolean bool)
public boolean monitorInputs(String _pathname) throws IOException
public boolean monitorInputs(boolean bool)
public boolean monitorErrors(String _pathname) throws IOException
public boolean monitorErrors(boolean bool)
public boolean monitorSoftmaxWeights(String _pathname) throws IOException
public boolean monitorSoftmaxWeights(boolean bool)
public boolean monitorWinningNetworks(String _pathname) throws IOException
public boolean monitorWinningNetworks(boolean bool)
public boolean monitorAverageErrors(String _pathname) throws IOException
public boolean monitorAverageErrors(boolean bool)
public boolean monitorAverageWeights(String _pathname) throws IOException
public boolean monitorAverageWeights(boolean bool)

public class MutateAllMonitor extends ActivityMonitor
public MutateAllMonitor(String _pathname) throws IOException
public MutateAllMonitor()
public boolean monitorAll(boolean bool)
public boolean monitorLayers(String _pathname) throws IOException
public boolean monitorLayers(boolean bool)
public boolean monitorNodes(String _pathname) throws IOException
public boolean monitorNodes(boolean bool)
public boolean monitorConnections(String _pathname) throws IOException
public boolean monitorConnections(boolean bool)

public class MutateConnectionsMonitor extends ActivityMonitor
public MutateConnectionsMonitor(String _pathname) throws IOException
public MutateConnectionsMonitor()
public boolean monitorAll(boolean bool)

public class MutateNodesMonitor extends ActivityMonitor
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public MutateNodesMonitor(String _pathname) throws IOException
public MutateNodesMonitor()
public boolean monitorAll(boolean bool)

public class NodeDeactivationMutationMonitor extends ActivityMonitor
public NodeDeactivationMutationMonitor(String _pathname) throws IOException
public NodeDeactivationMutationMonitor()
public boolean monitorAll(boolean bool)

public class WinnerTakesAllMonitor extends ModularTrainingMonitor
public WinnerTakesAllMonitor(String _pathname) throws IOException
public WinnerTakesAllMonitor()
public boolean monitorAll(boolean bool)
public boolean monitorImprovement(String _pathname) throws IOException
public boolean monitorImprovement(boolean bool)

4.  interfacePackage

public class Interface
public static void main(String [] args)

public class NetSys
public static void main(String [] args)
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APPENDIX B – Sample code output

SAMPLE OUTPUT FROM TEST WW1-MODBREEDER-6

AppAccelerator(tm) 1.1.034 for Java (JDK 
1.1), x86 version.
Copyright (c) 1998 Borland International. 
All Rights Reserved.

Welcome to the network breeder (type 
'help' for a list of commands).
-> modbreeder

modbreeder - set up a modular network 
breeder, and breed modular networks.

please enter following parameters (space 
seperated);
number of inputs: 64
number of outputs: 3
number of modular networks: 5
initial number of modules in each network: 
3
maximun number of layers in randomly 
generated networks: 2
maximum number of nodes per layer in 
randomly generated networks: 5
number of training patterns: 50
filename of training inputs data: 
h:\uni\project\data\what-where\ww1-inputs
filename of training outputs data: 
h:\uni\project\data\what-where\ww1-outputs
number of testing patterns: 100
filename of testing inputs data: 
h:\uni\project\data\what-where\ww1-test-
inputs
filename of testing outputs data: 
h:\uni\project\data\what-where\ww1-test-
outputs
number of epochs to train modular 
networks: 50
number of epochs to train each population 
member: 50
desired error: 0.1
percentage improvement that breeder must 
achieve: 30
module training step constant: 0.1
modular network training memory constant: 
0.1
modular network training step constant: 
0.1
modular network training improvement 
constant: 1.0
percentage of population to replace: 50
percentage of population to mutate: 50
monitoring on? (y/n): y
filename for cycle monitoring: 
h:\uni\project\monitor\ww1-modbreeder-
6\ww1-modbreeder-cycles-6
IO exception, probably incorrect filename
filename for cycle monitoring: 
h:\uni\project\monitors\ww1-modbreeder-
6\ww1-modbreeder-cycles-6
filename for error monitoring: 
h:\uni\project\monitors\ww1-modbreeder-
6\ww1-modbreeder-errors-6
evolving modular networks to create best 
network...

setting up initial population of modular 
networks

training all modular networks

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m........................................
.......................................
-EDITED-
..............................
TEST: average error per epoch of module 1 
= 0.41409505383830586
TEST: average weight per epoch of module 
1 = 0.05723214476484701
TEST: average error per epoch of module 2 
= 0.1977500647031548
TEST: average weight per epoch of module 
2 = 0.48765896674784465
TEST: average error per epoch of module 3 
= 0.2283812008382145
TEST: average weight per epoch of module 
3 = 0.45538084793551853

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m........................................
.......................................
-EDITED-
..............................
TEST: average error per epoch of module 1 
= 0.3593454122047755
TEST: average weight per epoch of module 
1 = 0.21801218370762906
TEST: average error per epoch of module 2 
= 0.3948502128677635
TEST: average weight per epoch of module 
2 = 0.21695961178077497
TEST: average error per epoch of module 3 
= 0.2591488590363779
TEST: average weight per epoch of module 
3 = 0.27257606758522274

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m........................................
.......................................
-EDITED-
..............................
TEST: average error per epoch of module 1 
= 0.29996790608531915
TEST: average weight per epoch of module 
1 = 0.21297670070064267
TEST: average error per epoch of module 2 
= 0.3322266611440392
TEST: average weight per epoch of module 
2 = 0.2014497783024335
TEST: average error per epoch of module 3 
= 0.33674762989583235
TEST: average weight per epoch of module 
3 = 0.26253665816305155

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m........................................
.......................................
-EDITED-
..............................
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TEST: average error per epoch of module 1 
= 0.4052036345450615
TEST: average weight per epoch of module 1 
= 0.12937120456648465
TEST: average error per epoch of module 2 
= 0.4736577133796439
TEST: average weight per epoch of module 2 
= 0.1417863601427705
TEST: average error per epoch of module 3 
= 0.07887762463444313
TEST: average weight per epoch of module 3 
= 0.7285799989086873

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m.........................................
......................................
-EDITED-
..............................
TEST: average error per epoch of module 1 
= 0.3767399831623017
TEST: average weight per epoch of module 1 
= 0.2147852284321644
TEST: average error per epoch of module 2 
= 0.36932931980672207
TEST: average weight per epoch of module 2 
= 0.23905104781952322
TEST: average error per epoch of module 3 
= 0.42020080128007664
TEST: average weight per epoch of module 3 
= 0.20947016996358023

setting best modules for each input 
pattern

input set 1 best modules are: 2 3 1 3 1
input set 2 best modules are: 2 3 2 3 1
input set 3 best modules are: 2 3 3 3 3
input set 4 best modules are: 2 3 3 3 1
input set 5 best modules are: 2 3 1 3 3
input set 6 best modules are: 2 3 3 3 1
input set 7 best modules are: 3 3 2 3 2
input set 8 best modules are: 3 3 2 3 2
input set 9 best modules are: 3 3 2 2 2
input set 10 best modules are: 3 3 2 3 2
input set 11 best modules are: 2 3 3 1 1
input set 12 best modules are: 2 3 3 3 1
input set 13 best modules are: 2 3 1 1 1
input set 14 best modules are: 2 3 1 3 1
input set 15 best modules are: 3 3 1 2 2
input set 16 best modules are: 3 3 2 3 2
input set 17 best modules are: 3 3 2 3 2
input set 18 best modules are: 3 3 2 3 2
input set 19 best modules are: 2 3 3 1 1
input set 20 best modules are: 2 3 3 3 1
input set 21 best modules are: 2 3 3 1 1
input set 22 best modules are: 2 3 3 3 1
input set 23 best modules are: 3 3 2 2 2
input set 24 best modules are: 3 3 2 3 2
input set 25 best modules are: 3 3 2 2 2
input set 26 best modules are: 3 3 2 3 2
input set 27 best modules are: 2 3 1 1 1
input set 28 best modules are: 2 3 1 3 1
input set 29 best modules are: 2 3 1 1 1
input set 30 best modules are: 2 3 1 3 1
input set 31 best modules are: 3 3 2 2 2
input set 32 best modules are: 3 3 2 3 2
input set 33 best modules are: 3 3 2 2 2
input set 34 best modules are: 3 3 2 3 2
input set 35 best modules are: 2 1 2 3 2
input set 36 best modules are: 2 3 1 3 2
input set 37 best modules are: 2 1 2 3 2
input set 38 best modules are: 2 3 1 3 2
input set 39 best modules are: 3 3 1 3 1
input set 40 best modules are: 3 3 1 3 1

input set 41 best modules are: 3 3 1 3 1
input set 42 best modules are: 3 3 1 3 1
input set 43 best modules are: 2 1 1 3 2
input set 44 best modules are: 2 3 1 3 2
input set 45 best modules are: 2 1 1 3 2
input set 46 best modules are: 2 3 1 3 2
input set 47 best modules are: 3 3 1 3 1
input set 48 best modules are: 3 3 1 3 1
input set 49 best modules are: 3 3 1 3 1
input set 50 best modules are: 3 3 1 3 1

finding sub-tasks

module 2 of the first modular network 
defines sub-task 1
module 3 of the first modular network 
defines sub-task 2
so there are 2 sub-tasks

setting up a breeder for sub-task 1

input and desired output pattern 1 added 
as training pattern
module 2 from modular network 1 added to 
population
module 3 from modular network 2 added to 
population
module 1 from modular network 3 added to 
population
module 3 from modular network 4 added to 
population
module 1 from modular network 5 added to 
population
input and desired output pattern 2 added 
as training pattern
module 2 from modular network 3 added to 
population
input and desired output pattern 3 added 
as training pattern
module 3 from modular network 3 added to 
population
module 3 from modular network 5 added to 
population
input and desired output pattern 4 added 
as training pattern
input and desired output pattern 5 added 
as training pattern
input and desired output pattern 6 added 
as training pattern
input and desired output pattern 11 added 
as training pattern
module 1 from modular network 4 added to 
population
input and desired output pattern 12 added 
as training pattern
input and desired output pattern 13 added 
as training pattern
input and desired output pattern 14 added 
as training pattern
input and desired output pattern 19 added 
as training pattern
input and desired output pattern 20 added 
as training pattern
input and desired output pattern 21 added 
as training pattern
input and desired output pattern 22 added 
as training pattern
input and desired output pattern 27 added 
as training pattern
input and desired output pattern 28 added 
as training pattern
input and desired output pattern 29 added 
as training pattern
input and desired output pattern 30 added 
as training pattern
input and desired output pattern 35 added 
as training pattern
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module 1 from modular network 2 added to 
population
module 2 from modular network 5 added to 
population
input and desired output pattern 36 added 
as training pattern
input and desired output pattern 37 added 
as training pattern
input and desired output pattern 38 added 
as training pattern
input and desired output pattern 43 added 
as training pattern
input and desired output pattern 44 added 
as training pattern
input and desired output pattern 45 added 
as training pattern
input and desired output pattern 46 added 
as training pattern

setting up a breeder for sub-task 2

input and desired output pattern 7 added 
as training pattern
module 3 from modular network 1 added to 
population
module 3 from modular network 2 added to 
population
module 2 from modular network 3 added to 
population
module 3 from modular network 4 added to 
population
module 2 from modular network 5 added to 
population
input and desired output pattern 8 added 
as training pattern
input and desired output pattern 9 added 
as training pattern
module 2 from modular network 4 added to 
population
input and desired output pattern 10 added 
as training pattern
input and desired output pattern 15 added 
as training pattern
module 1 from modular network 3 added to 
population
input and desired output pattern 16 added 
as training pattern
input and desired output pattern 17 added 
as training pattern
input and desired output pattern 18 added 
as training pattern
input and desired output pattern 23 added 
as training pattern
input and desired output pattern 24 added 
as training pattern
input and desired output pattern 25 added 
as training pattern
input and desired output pattern 26 added 
as training pattern
input and desired output pattern 31 added 
as training pattern
input and desired output pattern 32 added 
as training pattern
input and desired output pattern 33 added 
as training pattern
input and desired output pattern 34 added 
as training pattern
input and desired output pattern 39 added 
as training pattern
module 1 from modular network 5 added to 
population
input and desired output pattern 40 added 
as training pattern
input and desired output pattern 41 added 
as training pattern
input and desired output pattern 42 added 
as training pattern

input and desired output pattern 47 added 
as training pattern
input and desired output pattern 48 added 
as training pattern
input and desired output pattern 49 added 
as training pattern
input and desired output pattern 50 added 
as training pattern

starting breeding

TEST: generation 1 stats

TEST: population size = 11
TEST: population member 1 has 0 nodes (0 
active)
TEST: population member 2 has 4 nodes (4 
active)
TEST: population member 3 has 3 nodes (3 
active)
TEST: population member 4 has 0 nodes (0 
active)
TEST: population member 5 has 8 nodes (8 
active)
TEST: population member 6 has 1 nodes (1 
active)
TEST: population member 7 has 1 nodes (1 
active)
TEST: population member 8 has 2 nodes (2 
active)
TEST: population member 9 has 3 nodes (3 
active)
TEST: population member 10 has 1 nodes (1 
active)
TEST: population member 11 has 6 nodes (6 
active)
TEST: starting training population

TEST: starting training member 1
.........................................
.........
TEST: starting training member 2
.........................................
.........
TEST: starting training member 3
.........................................
.........
TEST: starting training member 4
.........................................
.........
TEST: starting training member 5
.........................................
.........
TEST: starting training member 6
.........................................
.........
TEST: starting training member 7
.........................................
.........
TEST: starting training member 8
.........................................
.........
TEST: starting training member 9
.........................................
.........
TEST: starting training member 10
.........................................
.........
TEST: starting training member 11
.........................................
.........
TEST: stopped training population
TEST: starting evaluating population 
fitnesses
TEST: population member 1 error = 
2.346548943012448
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TEST: population member 1 fitness = 
0.4261577424062683
TEST: population member 2 error = 
6.517898790710071
TEST: population member 2 fitness = 
0.15342367718647226
TEST: population member 3 error = 
8.144048217244848
TEST: population member 3 fitness = 
0.12278905690692271
TEST: population member 4 error = 
2.5337925905126073
TEST: population member 4 fitness = 
0.39466529491969654
TEST: population member 5 error = 
14.66581536234601
TEST: population member 5 fitness = 
0.06818577592129427
TEST: population member 6 error = 
19.540320025086476
TEST: population member 6 fitness = 
0.05117623450978124
TEST: population member 7 error = 
16.506843266315066
TEST: population member 7 fitness = 
0.060580935062288066
TEST: population member 8 error = 
16.968475681267158
TEST: population member 8 fitness = 
0.05893281275135274
TEST: population member 9 error = 
12.462880751323373
TEST: population member 9 fitness = 
0.0802382707460163
TEST: population member 10 error = 
16.319407663943664
TEST: population member 10 fitness = 
0.06127673384919567
TEST: population member 11 error = 
27.703443196022896
TEST: population member 11 fitness = 
0.036096596113495374
TEST: stopped evaluating population 
fitnesses
TEST: member 1 is fittest

TEST: generating generation 2

TEST: number of members wanted to cross = 
6
TEST: population members 7 4 selected for 
crossover
TEST: child 1 added to new population as 
member 1
TEST: child 2 added to new population as 
member 2
TEST: population members 2 5 selected for 
crossover
TEST: child 1 added to new population as 
member 3
TEST: child 2 added to new population as 
member 4
TEST: population members 1 9 selected for 
crossover
TEST: child 1 added to new population as 
member 5
TEST: child 2 added to new population as 
member 6
TEST: number of members actually crossed = 
6
TEST: 5 members to be kept unchanged
TEST: member 3 added to new population as 
member 7
TEST: member 8 added to new population as 
member 8
TEST: member 1 added to new population as 
member 9

TEST: member 11 added to new population 
as member 10
TEST: member 7 added to new population as 
member 11
TEST: 6 members (from new population) to 
be mutated
TEST: member 6 mutated
TEST: member 7 mutated
TEST: layer inserted at 0 with 1 nodes
TEST: member 5 mutated
TEST: layer inserted at 1 with 2 nodes
TEST: member 1 mutated
TEST: member 3 mutated
TEST: layer inserted at 1 with 2 nodes
TEST: member 4 mutated
TEST: layer inserted at 0 with 34 nodes

TEST: generation 2 stats

TEST: population size = 11
TEST: population member 1 has 0 nodes (0 
active)
TEST: population member 2 has 1 nodes (1 
active)
TEST: population member 3 has 8 nodes (8 
active)
TEST: population member 4 has 6 nodes (6 
active)
TEST: population member 5 has 5 nodes (5 
active)
TEST: population member 6 has 0 nodes (0 
active)
TEST: population member 7 has 3 nodes (3 
active)
TEST: population member 8 has 3 nodes (3 
active)
TEST: population member 9 has 34 nodes 
(34 active)
TEST: population member 10 has 6 nodes (6 
active)
TEST: population member 11 has 1 nodes (1 
active)
TEST: starting training population

TEST: starting training member 1
.........................................
.........
TEST: starting training member 2
.........................................
.........
TEST: starting training member 3
.........................................
.........
TEST: starting training member 4
.........................................
.........
TEST: starting training member 5
.........................................
.........
TEST: starting training member 6
.........................................
.........
TEST: starting training member 7
.........................................
.........
TEST: starting training member 8
.........................................
.........
TEST: starting training member 9
.........................................
.........
TEST: starting training member 10
.........................................
.........
TEST: starting training member 11
.........................................
.........TEST: stopped training populat

4



Appendix B Sample code output

ion
TEST: starting evaluating population 
fitnesses
TEST: population member 1 error = 
1.6395007597359927
TEST: population member 1 fitness = 
0.6099417728608001
TEST: population member 2 error = 
15.858206286967949
TEST: population member 2 fitness = 
0.06305883413950707
TEST: population member 3 error = 
13.5884502361773
TEST: population member 3 fitness = 
0.07359190949808563
TEST: population member 4 error = 
16.47975693760936
TEST: population member 4 fitness = 
0.060680506623119246
TEST: population member 5 error = 
14.685229923473488
TEST: population member 5 fitness = 
0.06809563113489685
TEST: population member 6 error = 
1.5592540839515663
TEST: population member 6 fitness = 
0.6413322949045821
TEST: population member 7 error = 
2.160705008280677
TEST: population member 7 fitness = 
0.462811904525423
TEST: population member 8 error = 
20.419016550626875
TEST: population member 8 fitness = 
0.048973955112901826
TEST: population member 9 error = 
25.816631521900433
TEST: population member 9 fitness = 
0.038734720257818794
TEST: population member 10 error = 
14.157323640600762
TEST: population member 10 fitness = 
0.07063481950304311
TEST: population member 11 error = 
15.858206286967949
TEST: population member 11 fitness = 
0.06305883413950707
TEST: stopped evaluating population 
fitnesses
TEST: member 6 is fittest
TEST: desired fitness reached

TEST: generation 1 stats

TEST: population size = 8
TEST: population member 1 has 0 nodes (0 
active)
TEST: population member 2 has 4 nodes (4 
active)
TEST: population member 3 has 1 nodes (1 
active)
TEST: population member 4 has 0 nodes (0 
active)
TEST: population member 5 has 6 nodes (6 
active)
TEST: population member 6 has 6 nodes (6 
active)
TEST: population member 7 has 3 nodes (3 
active)
TEST: population member 8 has 8 nodes (8 
active)
TEST: starting training population

TEST: starting training member 1
..........................................
........
TEST: starting training member 2

.........................................

.........
TEST: starting training member 3
.........................................
.........
TEST: starting training member 4
.........................................
.........
TEST: starting training member 5
.........................................
.........
TEST: starting training member 6
.........................................
.........
TEST: starting training member 7
.........................................
.........
TEST: starting training member 8
.........................................
.........
TEST: stopped training population
TEST: starting evaluating population 
fitnesses
TEST: population member 1 error = 
2.068180349714895
TEST: population member 1 fitness = 
0.483516826826951
TEST: population member 2 error = 
11.270487659640729
TEST: population member 2 fitness = 
0.08872730534819441
TEST: population member 3 error = 
12.64265723847817
TEST: population member 3 fitness = 
0.07909729585616548
TEST: population member 4 error = 
2.270577018679533
TEST: population member 4 fitness = 
0.44041668341272816
TEST: population member 5 error = 
10.29069163178764
TEST: population member 5 fitness = 
0.09717519830358436
TEST: population member 6 error = 
26.238531257736096
TEST: population member 6 fitness = 
0.03811188934994838
TEST: population member 7 error = 
12.401509799875937
TEST: population member 7 fitness = 
0.08063534328779903
TEST: population member 8 error = 
6.703212271718719
TEST: population member 8 fitness = 
0.14918220689788744
TEST: stopped evaluating population 
fitnesses
TEST: member 1 is fittest

TEST: generating generation 2

TEST: number of members wanted to cross = 
4
TEST: population members 5 1 selected for 
crossover
TEST: child 1 added to new population as 
member 1
TEST: child 2 added to new population as 
member 2
TEST: population members 4 7 selected for 
crossover
TEST: child 1 added to new population as 
member 3
TEST: child 2 added to new population as 
member 4
TEST: number of members actually crossed 
= 4
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TEST: 4 members to be kept unchanged
TEST: member 1 added to new population as 
member 5
TEST: member 8 added to new population as 
member 6
TEST: member 4 added to new population as 
member 7
TEST: member 6 added to new population as 
member 8
TEST: 4 members (from new population) to 
be mutated
TEST: member 4 mutated
TEST: member 5 mutated
TEST: node 3 removed from layer 2
TEST: member 2 mutated
TEST: connection 3 removed from output 2
TEST: member 1 mutated

TEST: generation 2 stats

TEST: population size = 8
TEST: population member 1 has 0 nodes (0 
active)
TEST: population member 2 has 6 nodes (6 
active)
TEST: population member 3 has 3 nodes (3 
active)
TEST: population member 4 has 0 nodes (0 
active)
TEST: population member 5 has 0 nodes (0 
active)
TEST: population member 6 has 7 nodes (7 
active)
TEST: population member 7 has 0 nodes (0 
active)
TEST: population member 8 has 6 nodes (6 
active)
TEST: starting training population

TEST: starting training member 1
..........................................
........
TEST: starting training member 2
..........................................
........
TEST: starting training member 3
..........................................
........
TEST: starting training member 4
..........................................
........
TEST: starting training member 5
..........................................
........
TEST: starting training member 6
..........................................
........
TEST: starting training member 7
..........................................
........
TEST: starting training member 8
..........................................
........TEST: stopped training populat
ion
TEST: starting evaluating population 
fitnesses
TEST: population member 1 error = 
1.370242384324583
TEST: population member 1 fitness = 
0.7297978893660613
TEST: population member 2 error = 
13.266858121273074
TEST: population member 2 fitness = 
0.07537579665501398
TEST: population member 3 error = 
12.222886296452046
TEST: population member 3 fitness = 

0.0818137366041171
TEST: population member 4 error = 
1.455161876371046
TEST: population member 4 fitness = 
0.6872087677927963
TEST: population member 5 error = 
1.370242384324583
TEST: population member 5 fitness = 
0.7297978893660613
TEST: population member 6 error = 
12.152474417979121
TEST: population member 6 fitness = 
0.0822877683676123
TEST: population member 7 error = 
1.455161876371046
TEST: population member 7 fitness = 
0.6872087677927963
TEST: population member 8 error = 
26.22730347208864
TEST: population member 8 fitness = 
0.038128204871088256
TEST: stopped evaluating population 
fitnesses
TEST: member 1 is fittest
TEST: desired fitness reached

setting modular networks from breeders

taking members from breeder 1
population member 6 added as module in 
modular network 1
population member 1 added as module in 
modular network 2
population member 7 added as module in 
modular network 3
population member 3 added as module in 
modular network 4
population member 10 added as module in 
modular network 5
taking members from breeder 2
population member 1 added as module in 
modular network 1
population member 5 added as module in 
modular network 2
population member 4 added as module in 
modular network 3
population member 7 added as module in 
modular network 4
population member 6 added as module in 
modular network 5

finding best modular network

the error of modular network 1 = 
0.15119914030554285
the error of modular network 2 = 
0.10739070076224232
the error of modular network 3 = 
0.1353945574954972
the error of modular network 4 = 
0.1708024881067879
the error of modular network 5 = 
0.25144689163660056
best modular network = 2

training all modular networks

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m........................................
.......................................
-EDITED-
..........
TEST: average error per epoch of module 1 
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= 0.06346829607325283
TEST: average weight per epoch of module 1 
= 0.3882876310903775
TEST: average error per epoch of module 2 
= 0.07568032669363639
TEST: average weight per epoch of module 2 
= 0.3663402007494739

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m.........................................
......................................
-EDITED-
..........
TEST: average error per epoch of module 1 
= 0.008956695295416189
TEST: average weight per epoch of module 1 
= 0.416072675051528
TEST: average error per epoch of module 2 
= 0.08575067360454604
TEST: average weight per epoch of module 2 
= 0.2416748617554456

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m.........................................
......................................
-EDITED-
..........
TEST: average error per epoch of module 1 
= 0.06621125679930567
TEST: average weight per epoch of module 1 
= 0.4264438882887907
TEST: average error per epoch of module 2 
= 0.022081959444451935
TEST: average weight per epoch of module 2 
= 0.2990247137944984

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m.........................................
......................................
-EDITED-
..........
TEST: average error per epoch of module 1 
= 0.27410735096473654
TEST: average weight per epoch of module 1 
= 0.10882186324086639
TEST: average error per epoch of module 2 
= 0.007186064153273938
TEST: average weight per epoch of module 2 
= 0.7296107363617412

TEST: training all modules and gating 
network, on all examples (for 1 epoch per
example), for 50 epochs

m.........................................
......................................
-EDITED-
..........
TEST: average error per epoch of module 1 
= 0.20434542089946361
TEST: average weight per epoch of module 1 
= 0.28501589628080753
TEST: average error per epoch of module 2 
= 0.2261209784751715
TEST: average weight per epoch of module 2 
= 0.26803929014780775

setting best modules for each input 

pattern

input set 1 best modules are: 1 1 2 2 1
input set 2 best modules are: 1 1 2 2 2
input set 3 best modules are: 1 1 1 2 1
input set 4 best modules are: 1 1 1 2 1
input set 5 best modules are: 1 1 1 2 1
input set 6 best modules are: 1 1 1 2 1
input set 7 best modules are: 2 1 2 2 2
input set 8 best modules are: 2 2 2 2 2
input set 9 best modules are: 2 2 2 2 2
input set 10 best modules are: 2 2 2 2 2
input set 11 best modules are: 1 1 1 2 2
input set 12 best modules are: 1 1 1 2 1
input set 13 best modules are: 1 1 1 2 1
input set 14 best modules are: 1 1 1 2 1
input set 15 best modules are: 2 2 2 2 2
input set 16 best modules are: 2 2 2 2 2
input set 17 best modules are: 1 2 2 2 2
input set 18 best modules are: 2 2 2 2 2
input set 19 best modules are: 2 1 1 2 2
input set 20 best modules are: 1 1 1 2 1
input set 21 best modules are: 1 1 1 2 2
input set 22 best modules are: 1 1 1 2 1
input set 23 best modules are: 1 2 2 2 2
input set 24 best modules are: 2 2 2 2 2
input set 25 best modules are: 2 2 2 2 2
input set 26 best modules are: 2 2 2 2 2
input set 27 best modules are: 2 1 1 2 2
input set 28 best modules are: 1 1 1 2 1
input set 29 best modules are: 2 1 1 2 2
input set 30 best modules are: 1 1 1 2 1
input set 31 best modules are: 1 2 2 2 2
input set 32 best modules are: 2 2 2 2 2
input set 33 best modules are: 1 2 2 2 2
input set 34 best modules are: 2 2 2 2 2
input set 35 best modules are: 1 1 1 2 1
input set 36 best modules are: 1 1 1 2 1
input set 37 best modules are: 1 1 1 2 1
input set 38 best modules are: 1 1 1 2 1
input set 39 best modules are: 2 2 2 2 2
input set 40 best modules are: 2 2 2 2 2
input set 41 best modules are: 2 2 2 2 1
input set 42 best modules are: 2 2 2 2 2
input set 43 best modules are: 1 1 1 2 1
input set 44 best modules are: 1 1 1 2 1
input set 45 best modules are: 1 1 1 2 1
input set 46 best modules are: 1 1 1 2 1
input set 47 best modules are: 2 2 2 2 1
input set 48 best modules are: 2 2 2 2 2
input set 49 best modules are: 2 2 2 2 1
input set 50 best modules are: 2 2 2 2 2

finding sub-tasks

module 1 of the first modular network 
defines sub-task 1
module 2 of the first modular network 
defines sub-task 2
so there are 2 sub-tasks

setting up a breeder for sub-task 1

input and desired output pattern 1 added 
as training pattern
module 1 from modular network 1 added to 
population
module 1 from modular network 2 added to 
population
module 2 from modular network 3 added to 
population
module 2 from modular network 4 added to 
population
module 1 from modular network 5 added to 
population
input and desired output pattern 2 added 
as training pattern
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module 2 from modular network 5 added to 
population
input and desired output pattern 3 added 
as training pattern
module 1 from modular network 3 added to 
population
input and desired output pattern 4 added 
as training pattern
input and desired output pattern 5 added 
as training pattern
input and desired output pattern 6 added 
as training pattern
input and desired output pattern 11 added 
as training pattern
input and desired output pattern 12 added 
as training pattern
input and desired output pattern 13 added 
as training pattern
input and desired output pattern 14 added 
as training pattern
input and desired output pattern 17 added 
as training pattern
module 2 from modular network 2 added to 
population
input and desired output pattern 20 added 
as training pattern
input and desired output pattern 21 added 
as training pattern
input and desired output pattern 22 added 
as training pattern
input and desired output pattern 23 added 
as training pattern
input and desired output pattern 28 added 
as training pattern
input and desired output pattern 30 added 
as training pattern
input and desired output pattern 31 added 
as training pattern
input and desired output pattern 33 added 
as training pattern
input and desired output pattern 35 added 
as training pattern
input and desired output pattern 36 added 
as training pattern
input and desired output pattern 37 added 
as training pattern
input and desired output pattern 38 added 
as training pattern
input and desired output pattern 43 added 
as training pattern
input and desired output pattern 44 added 
as training pattern
input and desired output pattern 45 added 
as training pattern
input and desired output pattern 46 added 
as training pattern

setting up a breeder for sub-task 2

input and desired output pattern 7 added 
as training pattern
module 2 from modular network 1 added to 
population
module 1 from modular network 2 added to 
population
module 2 from modular network 3 added to 
population
module 2 from modular network 4 added to 
population
module 2 from modular network 5 added to 
population
input and desired output pattern 8 added 
as training pattern
module 2 from modular network 2 added to 
population
input and desired output pattern 9 added 
as training pattern

input and desired output pattern 10 added 
as training pattern
input and desired output pattern 15 added 
as training pattern
input and desired output pattern 16 added 
as training pattern
input and desired output pattern 18 added 
as training pattern
input and desired output pattern 19 added 
as training pattern
module 1 from modular network 3 added to 
population
input and desired output pattern 24 added 
as training pattern
input and desired output pattern 25 added 
as training pattern
input and desired output pattern 26 added 
as training pattern
input and desired output pattern 27 added 
as training pattern
input and desired output pattern 29 added 
as training pattern
input and desired output pattern 32 added 
as training pattern
input and desired output pattern 34 added 
as training pattern
input and desired output pattern 39 added 
as training pattern
input and desired output pattern 40 added 
as training pattern
input and desired output pattern 41 added 
as training pattern
module 1 from modular network 5 added to 
population
input and desired output pattern 42 added 
as training pattern
input and desired output pattern 47 added 
as training pattern
input and desired output pattern 48 added 
as training pattern
input and desired output pattern 49 added 
as training pattern
input and desired output pattern 50 added 
as training pattern

starting breeding

TEST: generation 1 stats

TEST: population size = 8
TEST: population member 1 has 0 nodes (0 
active)
TEST: population member 2 has 0 nodes (0 
active)
TEST: population member 3 has 0 nodes (0 
active)
TEST: population member 4 has 0 nodes (0 
active)
TEST: population member 5 has 6 nodes (6 
active)
TEST: population member 6 has 7 nodes (7 
active)
TEST: population member 7 has 3 nodes (3 
active)
TEST: population member 8 has 0 nodes (0 
active)
TEST: starting training population

TEST: starting training member 1
.........................................
.........
TEST: starting training member 2
.........................................
.........
TEST: starting training member 3
.........................................
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.........
TEST: starting training member 4
..........................................
........
TEST: starting training member 5
..........................................
........
TEST: starting training member 6
..........................................
........
TEST: starting training member 7
..........................................
........
TEST: starting training member 8
..........................................
........
TEST: stopped training population
TEST: starting evaluating population 
fitnesses
TEST: population member 1 error = 
1.3523475975575454
TEST: population member 1 fitness = 
0.7394548574686604
TEST: population member 2 error = 
1.1287202030578243
TEST: population member 2 fitness = 
0.885959157363262
TEST: population member 3 error = 
1.5681119470500533
TEST: population member 3 fitness = 
0.6377095728919158
TEST: population member 4 error = 
1.2712865802366433
TEST: population member 4 fitness = 
0.7866047007385661
TEST: population member 5 error = 
14.034910805868503
TEST: population member 5 fitness = 
0.0712508981234041
TEST: population member 6 error = 
15.452216914005213
TEST: population member 6 fitness = 
0.06471563307486602
TEST: population member 7 error = 
0.9571828247056348
TEST: population member 7 fitness = 
1.044732494346138
TEST: population member 8 error = 
2.301361722269734
TEST: population member 8 fitness = 
0.43452534659077546
TEST: stopped evaluating population 
fitnesses
TEST: member 7 is fittest
TEST: desired fitness reached

TEST: generation 1 stats

TEST: population size = 8
TEST: population member 1 has 0 nodes (0 
active)
TEST: population member 2 has 0 nodes (0 
active)
TEST: population member 3 has 0 nodes (0 
active)
TEST: population member 4 has 0 nodes (0 
active)
TEST: population member 5 has 7 nodes (7 
active)
TEST: population member 6 has 0 nodes (0 
active)
TEST: population member 7 has 3 nodes (3 
active)
TEST: population member 8 has 6 nodes (6 
active)
TEST: starting training population

TEST: starting training member 1
.........................................
.........
TEST: starting training member 2
.........................................
.........
TEST: starting training member 3
.........................................
.........
TEST: starting training member 4
.........................................
.........
TEST: starting training member 5
.........................................
.........
TEST: starting training member 6
.........................................
.........
TEST: starting training member 7
.........................................
.........
TEST: starting training member 8
.........................................
.........
TEST: stopped training population
TEST: starting evaluating population 
fitnesses
TEST: population member 1 error = 
1.131799873450384
TEST: population member 1 fitness = 
0.8835484288855932
TEST: population member 2 error = 
1.162418027681366
TEST: population member 2 fitness = 
0.8602757150924994
TEST: population member 3 error = 
0.9463779972273676
TEST: population member 3 fitness = 
1.056660238223765
TEST: population member 4 error = 
0.9038187612766001
TEST: population member 4 fitness = 
1.1064165105264563
TEST: population member 5 error = 
10.251427033112359
TEST: population member 5 fitness = 
0.09754739479391265
TEST: population member 6 error = 
1.2020396423173496
TEST: population member 6 fitness = 
0.8319193184612049
TEST: population member 7 error = 
1.6448340802542987
TEST: population member 7 fitness = 
0.6079640566818725
TEST: population member 8 error = 
17.529398885390552
TEST: population member 8 fitness = 
0.05704702177970435
TEST: stopped evaluating population 
fitnesses
TEST: member 4 is fittest
TEST: desired fitness reached

setting modular networks from breeders

taking members from breeder 1
population member 7 added as module in 
modular network 1
population member 2 added as module in 
modular network 2
population member 4 added as module in 
modular network 3
population member 1 added as module in 
modular network 4
population member 3 added as module in 
modular network 5
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taking members from breeder 2
population member 4 added as module in 
modular network 1
population member 3 added as module in 
modular network 2
population member 1 added as module in 
modular network 3
population member 2 added as module in 
modular network 4
population member 6 added as module in 
modular network 5

finding best modular network

the error of modular network 1 = 
0.058464622451071833
the error of modular network 2 = 
0.013469816134839855
the error of modular network 3 = 
0.014275987708537828
the error of modular network 4 = 
0.01346197071701132
the error of modular network 5 = 
0.018915693976082178
best modular network = 4

desired error reached

best modular network = 4

getting best network outputs on given 
training input sets
input set 1
 network output 1 = 0.0162284976551846
 network output 2 = 0.9977200816342175
 network output 3 = 0.018181506802723013
input set 2
 network output 1 = 0.9630902368409311
 network output 2 = 0.9998128939879234
 network output 3 = 0.009081421954160644
input set 3
 network output 1 = 0.028150333279995565
 network output 2 = 0.024965566114520492
 network output 3 = 0.9938219256252514
input set 4
 network output 1 = 0.9513449067274232
 network output 2 = 0.00226658982360703
 network output 3 = 0.9994288066138943
input set 5
 network output 1 = 0.029670532809641742
 network output 2 = 0.02469759951234892
 network output 3 = 0.9937705608765763
input set 6
 network output 1 = 0.9513009511573634
 network output 2 = 0.0024655015827345435
 network output 3 = 0.9994208278175385
input set 7
 network output 1 = 0.024522802788504165
 network output 2 = 0.9461238733183384
 network output 3 = 0.9729197196336186
input set 8
 network output 1 = 0.6956861490580387
 network output 2 = 0.9889655010754879
 network output 3 = 0.9923756183130865
input set 9
 network output 1 = 0.0894043365483488
 network output 2 = 0.9440453828768163
 network output 3 = 0.9750854946223477
input set 10
 network output 1 = 0.8770445140533183
 network output 2 = 0.9995752040152623
 network output 3 = 0.9578334402152139
input set 11
 network output 1 = 0.042823990887475356
 network output 2 = 0.029301638589665883

 network output 3 = 0.9928287406774114
input set 12
 network output 1 = 0.9363457574092323
 network output 2 = 5.764802602204603E-4
 network output 3 = 0.9998056259870102
input set 13
 network output 1 = 0.049714505950558804
 network output 2 = 0.03027577003324982
 network output 3 = 0.9927066589068945
input set 14
 network output 1 = 0.9479298973573012
 network output 2 = 6.013659728527951E-4
 network output 3 = 0.999801467729392
input set 15
 network output 1 = 0.044955310756854966
 network output 2 = 0.947616306633368
 network output 3 = 0.9722561257261397
input set 16
 network output 1 = 0.7900414542427991
 network output 2 = 0.9978056173111497
 network output 3 = 0.9967055122619894
input set 17
 network output 1 = 0.10499122150240679
 network output 2 = 0.974978476265854
 network output 3 = 0.9852741741880262
input set 18
 network output 1 = 0.6542260824839334
 network output 2 = 0.9980235152461296
 network output 3 = 0.9989638735884054
input set 19
 network output 1 = 0.0942405373544062
 network output 2 = 0.02770356813752422
 network output 3 = 0.9945206228899381
input set 20
 network output 1 = 0.8570084639026765
 network output 2 = 8.321814112093504E-4
 network output 3 = 0.9999191133975684
input set 21
 network output 1 = 0.05537105939234297
 network output 2 = 0.0311954120512645
 network output 3 = 0.9943927150381132
input set 22
 network output 1 = 0.92249516730627
 network output 2 = 7.02420080347272E-4
 network output 3 = 0.99991653009567
input set 23
 network output 1 = 0.09004149490072828
 network output 2 = 0.9726511127325319
 network output 3 = 0.9822354426375395
input set 24
 network output 1 = 0.6895235197138868
 network output 2 = 0.9989189357004145
 network output 3 = 0.9984492122649435
input set 25
 network output 1 = 0.04756927458676506
 network output 2 = 0.9367552030628652
 network output 3 = 0.9738386046237291
input set 26
 network output 1 = 0.755073400944204
 network output 2 = 0.9983122426353566
 network output 3 = 0.9975723000146872
input set 27
 network output 1 = 0.10333727303318607
 network output 2 = 0.028678435289315185
 network output 3 = 0.9943703974172671
input set 28
 network output 1 = 0.8569924097828392
 network output 2 = 7.080442694536173E-4
 network output 3 = 0.9962994501494912
input set 29
 network output 1 = 0.13036507680580842
 network output 2 = 0.02840482077801061
 network output 3 = 0.9943217629931687
input set 30
 network output 1 = 0.9014761259325386
 network output 2 = 7.670954020429863E-4
 network output 3 = 0.9961865405221779
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input set 31
 network output 1 = 0.09965437191033721
 network output 2 = 0.9722521625739213
 network output 3 = 0.9807302054919036
input set 32
 network output 1 = 0.669931275614264
 network output 2 = 0.998799214460974
 network output 3 = 0.9849944758405278
input set 33
 network output 1 = 0.1154608553394301
 network output 2 = 0.971847699805662
 network output 3 = 0.979781566212317
input set 34
 network output 1 = 0.6752859482874729
 network output 2 = 0.9979856108390339
 network output 3 = 0.9816000435881373
input set 35
 network output 1 = 0.041528787617437724
 network output 2 = 0.02449542514127141
 network output 3 = 0.016640945137490242
input set 36
 network output 1 = 0.9418034522875542
 network output 2 = 4.7446852151569627E-4
 network output 3 = 0.002764489376519178
input set 37
 network output 1 = 0.04139339830880391
 network output 2 = 0.024650604541099918
 network output 3 = 0.01674557867920211
input set 38
 network output 1 = 0.9424356999252707
 network output 2 = 4.778731929532075E-4
 network output 3 = 0.002821486231421061
input set 39
 network output 1 = 0.038965439880494224
 network output 2 = 0.9348219732593004
 network output 3 = 0.14380795756590292
input set 40
 network output 1 = 0.7639306047646819
 network output 2 = 0.9966396921824026
 network output 3 = 0.07692516989912078
input set 41
 network output 1 = 0.03885229339837172
 network output 2 = 0.9388448764656272
 network output 3 = 0.13787814614631336
input set 42
 network output 1 = 0.7415791896238111
 network output 2 = 0.9970282537589282
 network output 3 = 0.07465903847662694
input set 43
 network output 1 = 0.028051878764364626
 network output 2 = 0.025801207713009783
 network output 3 = 0.015673616719446427
input set 44
 network output 1 = 0.9534009116861502
 network output 2 = 0.0022295423874226276
 network output 3 = 3.361975232384451E-4
input set 45
 network output 1 = 0.0277153490984789
 network output 2 = 0.02590327351695322
 network output 3 = 0.015791381808173903
input set 46
 network output 1 = 0.9532265718410691
 network output 2 = 0.002223238537557193
 network output 3 = 3.1806108627839406E-4
input set 47
 network output 1 = 0.024700227821107396
 network output 2 = 0.9391101072360561
 network output 3 = 0.12230538055516832
input set 48
 network output 1 = 0.6728882438421318
 network output 2 = 0.9868531902295898
 network output 3 = 0.02048666424345231
input set 49
 network output 1 = 0.024042225472419347
 network output 2 = 0.9333718646718716
 network output 3 = 0.1276392397680674
input set 50

 network output 1 = 0.6119503031851801
 network output 2 = 0.9830350443406126
 network output 3 = 0.021311745463885468

getting network output given test 
inputs...
test pattern 1;
 output 1 = 0.0162284976551846
 output 2 = 0.9977200816342175
 output 3 = 0.018181506802723013

test pattern 2;
 output 1 = 0.9630902368409311
 output 2 = 0.9998128939879234
 output 3 = 0.009081421954160644

test pattern 3;
 output 1 = 0.18995171368541053
 output 2 = 0.24765442778356217
 output 3 = 0.8811380667216923

test pattern 4;
 output 1 = 0.7560068728629108
 output 2 = 0.5261223789532891
 output 3 = 0.8258569215047351

test pattern 5;
 output 1 = 0.028150333279995565
 output 2 = 0.024965566114520492
 output 3 = 0.9938219256252514

test pattern 6;
 output 1 = 0.9513449067274232
 output 2 = 0.00226658982360703
 output 3 = 0.9994288066138943

test pattern 7;
 output 1 = 0.26020214656648477
 output 2 = 0.11091088508701172
 output 3 = 0.9749624889938575

test pattern 8;
 output 1 = 0.95049997218474
 output 2 = 0.002558812979308496
 output 3 = 0.9994324004577624

test pattern 9;
 output 1 = 0.029670532809641742
 output 2 = 0.02469759951234892
 output 3 = 0.9937705608765763

test pattern 10;
 output 1 = 0.9513009511573634
 output 2 = 0.0024655015827345435
 output 3 = 0.9994208278175385

test pattern 11;
 output 1 = 0.3030833049744916
 output 2 = 0.7603016934502447
 output 3 = 0.9552025849739314

test pattern 12;
 output 1 = 0.9843584472747533
 output 2 = 0.6434790953534031
 output 3 = 0.9978037941781541

test pattern 13;
 output 1 = 0.024522802788504165
 output 2 = 0.9461238733183384
 output 3 = 0.9729197196336186

test pattern 14;
 output 1 = 0.6956861490580387
 output 2 = 0.9889655010754879
 output 3 = 0.9923756183130865

test pattern 15;
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 output 1 = 0.12004782571381425
 output 2 = 0.8969817101834668
 output 3 = 0.9714862107110385

test pattern 16;
 output 1 = 0.9225244292760293
 output 2 = 0.995128634142761
 output 3 = 0.9936808804849313

test pattern 17;
 output 1 = 0.0894043365483488
 output 2 = 0.9440453828768163
 output 3 = 0.9750854946223477

test pattern 18;
 output 1 = 0.8770445140533183
 output 2 = 0.9995752040152623
 output 3 = 0.9578334402152139

test pattern 19;
 output 1 = 0.0440030345968075
 output 2 = 0.79838141239054
 output 3 = 0.6600947834460815

test pattern 20;
 output 1 = 0.6986113926579585
 output 2 = 0.6633762450284648
 output 3 = 0.9889481459246046

test pattern 21;
 output 1 = 0.042823990887475356
 output 2 = 0.029301638589665883
 output 3 = 0.9928287406774114

test pattern 22;
 output 1 = 0.9363457574092323
 output 2 = 5.764802602204603E-4
 output 3 = 0.9998056259870102

test pattern 23;
 output 1 = 0.14496620423549336
 output 2 = 0.023505387740209063
 output 3 = 0.9929997649199992

test pattern 24;
 output 1 = 0.9376285808626195
 output 2 = 6.670666443108952E-4
 output 3 = 0.9998077756173553

test pattern 25;
 output 1 = 0.049714505950558804
 output 2 = 0.03027577003324982
 output 3 = 0.9927066589068945

test pattern 26;
 output 1 = 0.9479298973573012
 output 2 = 6.013659728527951E-4
 output 3 = 0.999801467729392

test pattern 27;
 output 1 = 0.18817162927291303
 output 2 = 0.4434815643685347
 output 3 = 0.9888787420355329

test pattern 28;
 output 1 = 0.9630001693127151
 output 2 = 0.39356525646334584
 output 3 = 0.999432506773251

test pattern 29;
 output 1 = 0.044955310756854966
 output 2 = 0.947616306633368
 output 3 = 0.9722561257261397

test pattern 30;
 output 1 = 0.7900414542427991
 output 2 = 0.9978056173111497

 output 3 = 0.9967055122619894

test pattern 31;
 output 1 = 0.0890397897437125
 output 2 = 0.9506506548800981
 output 3 = 0.9705927860728585

test pattern 32;
 output 1 = 0.7805503880292728
 output 2 = 0.9976650536636733
 output 3 = 0.9977600309079075

test pattern 33;
 output 1 = 0.10499122150240679
 output 2 = 0.974978476265854
 output 3 = 0.9852741741880262

test pattern 34;
 output 1 = 0.6542260824839334
 output 2 = 0.9980235152461296
 output 3 = 0.9989638735884054

test pattern 35;
 output 1 = 0.04811040430161197
 output 2 = 0.4064962509930949
 output 3 = 0.9969937652957634

test pattern 36;
 output 1 = 0.8299943671948133
 output 2 = 0.412136041433835
 output 3 = 0.999747484764399

test pattern 37;
 output 1 = 0.0942405373544062
 output 2 = 0.02770356813752422
 output 3 = 0.9945206228899381

test pattern 38;
 output 1 = 0.8570084639026765
 output 2 = 8.321814112093504E-4
 output 3 = 0.9999191133975684

test pattern 39;
 output 1 = 0.11414669220164754
 output 2 = 0.029282551222594176
 output 3 = 0.9959211896977441

test pattern 40;
 output 1 = 0.8861852478847063
 output 2 = 6.882377501582532E-4
 output 3 = 0.9999206759744904

test pattern 41;
 output 1 = 0.05537105939234297
 output 2 = 0.0311954120512645
 output 3 = 0.9943927150381132

test pattern 42;
 output 1 = 0.92249516730627
 output 2 = 7.02420080347272E-4
 output 3 = 0.99991653009567

test pattern 43;
 output 1 = 0.0679231603423466
 output 2 = 0.5078321659717369
 output 3 = 0.9908041365038227

test pattern 44;
 output 1 = 0.8578888213803469
 output 2 = 0.4826088100553547
 output 3 = 0.9997053439339743

test pattern 45;
 output 1 = 0.09004149490072828
 output 2 = 0.9726511127325319
 output 3 = 0.9822354426375395
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test pattern 46;
 output 1 = 0.6895235197138868
 output 2 = 0.9989189357004145
 output 3 = 0.9984492122649435

test pattern 47;
 output 1 = 0.04823730172630288
 output 2 = 0.9618861098065231
 output 3 = 0.9816818507040456

test pattern 48;
 output 1 = 0.7377524717666863
 output 2 = 0.9983598591818328
 output 3 = 0.9978597992870786

test pattern 49;
 output 1 = 0.04756927458676506
 output 2 = 0.9367552030628652
 output 3 = 0.9738386046237291

test pattern 50;
 output 1 = 0.755073400944204
 output 2 = 0.9983122426353566
 output 3 = 0.9975723000146872

test pattern 51;
 output 1 = 0.0647233812581437
 output 2 = 0.5172245952215258
 output 3 = 0.585487136822956

test pattern 52;
 output 1 = 0.9075803801961009
 output 2 = 0.43912649826427624
 output 3 = 0.985041012421078

test pattern 53;
 output 1 = 0.10333727303318607
 output 2 = 0.028678435289315185
 output 3 = 0.9943703974172671

test pattern 54;
 output 1 = 0.8569924097828392
 output 2 = 7.080442694536173E-4
 output 3 = 0.9962994501494912

test pattern 55;
 output 1 = 0.08623499237743898
 output 2 = 0.02618012911365511
 output 3 = 0.85552604520493

test pattern 56;
 output 1 = 0.8600062841910219
 output 2 = 7.081397972250607E-4
 output 3 = 0.996378245388017

test pattern 57;
 output 1 = 0.13036507680580842
 output 2 = 0.02840482077801061
 output 3 = 0.9943217629931687

test pattern 58;
 output 1 = 0.9014761259325386
 output 2 = 7.670954020429863E-4
 output 3 = 0.9961865405221779

test pattern 59;
 output 1 = 0.05440880768463274
 output 2 = 0.46343970747526475
 output 3 = 0.9001793720883998

test pattern 60;
 output 1 = 0.8650289236473939
 output 2 = 0.4543377765644454
 output 3 = 0.9949983675985484

test pattern 61;
 output 1 = 0.09965437191033721

 output 2 = 0.9722521625739213
 output 3 = 0.9807302054919036

test pattern 62;
 output 1 = 0.669931275614264
 output 2 = 0.998799214460974
 output 3 = 0.9849944758405278

test pattern 63;
 output 1 = 0.04958469829883257
 output 2 = 0.9607466495559338
 output 3 = 0.8202575252790307

test pattern 64;
 output 1 = 0.6277793823493947
 output 2 = 0.998790620860744
 output 3 = 0.9844401381852763

test pattern 65;
 output 1 = 0.1154608553394301
 output 2 = 0.971847699805662
 output 3 = 0.979781566212317

test pattern 66;
 output 1 = 0.6752859482874729
 output 2 = 0.9979856108390339
 output 3 = 0.9816000435881373

test pattern 67;
 output 1 = 0.19168632590858412
 output 2 = 0.40367563516290006
 output 3 = 0.4247828640941451

test pattern 68;
 output 1 = 0.9508499595672987
 output 2 = 0.36213178498477405
 output 3 = 0.22166398710269505

test pattern 69;
 output 1 = 0.041528787617437724
 output 2 = 0.02449542514127141
 output 3 = 0.016640945137490242

test pattern 70;
 output 1 = 0.9418034522875542
 output 2 = 4.7446852151569627E-4
 output 3 = 0.002764489376519178

test pattern 71;
 output 1 = 0.19981561447497503
 output 2 = 0.02173967036310507
 output 3 = 0.3795727053155053

test pattern 72;
 output 1 = 0.9418575297548945
 output 2 = 4.6759717630711945E-4
 output 3 = 0.0028436940266040596

test pattern 73;
 output 1 = 0.04139339830880391
 output 2 = 0.024650604541099918
 output 3 = 0.01674557867920211

test pattern 74;
 output 1 = 0.9424356999252707
 output 2 = 4.778731929532075E-4
 output 3 = 0.002821486231421061

test pattern 75;
 output 1 = 0.07306466991351185
 output 2 = 0.5038886547659642
 output 3 = 0.5935371841702833

test pattern 76;
 output 1 = 0.8376588687238966
 output 2 = 0.40229330638809063
 output 3 = 0.020344182160976547
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test pattern 77;
 output 1 = 0.038965439880494224
 output 2 = 0.9348219732593004
 output 3 = 0.14380795756590292

test pattern 78;
 output 1 = 0.7639306047646819
 output 2 = 0.9966396921824026
 output 3 = 0.07692516989912078

test pattern 79;
 output 1 = 0.13805396310084012
 output 2 = 0.9605968256292209
 output 3 = 0.5305433363827944

test pattern 80;
 output 1 = 0.7450469725135643
 output 2 = 0.9965690860306378
 output 3 = 0.08594127196587166

test pattern 81;
 output 1 = 0.03885229339837172
 output 2 = 0.9388448764656272
 output 3 = 0.13787814614631336

test pattern 82;
 output 1 = 0.7415791896238111
 output 2 = 0.9970282537589282
 output 3 = 0.07465903847662694

test pattern 83;
 output 1 = 0.29915256123450507
 output 2 = 0.7944478971682666
 output 3 = 0.8546416578670327

test pattern 84;
 output 1 = 0.9945001222519778
 output 2 = 0.70565518276443
 output 3 = 0.027679781889981027

test pattern 85;
 output 1 = 0.028051878764364626
 output 2 = 0.025801207713009783
 output 3 = 0.015673616719446427

test pattern 86;
 output 1 = 0.9534009116861502
 output 2 = 0.0022295423874226276
 output 3 = 3.361975232384451E-4

test pattern 87;
 output 1 = 0.2652441793738293
 output 2 = 0.09557840502102671
 output 3 = 0.07413725870620642

test pattern 88;
 output 1 = 0.9536983493356297
 output 2 = 0.0021517490477996988
 output 3 = 3.2410745223098505E-4

test pattern 89;
 output 1 = 0.0277153490984789
 output 2 = 0.02590327351695322
 output 3 = 0.015791381808173903

test pattern 90;
 output 1 = 0.9532265718410691
 output 2 = 0.002223238537557193
 output 3 = 3.1806108627839406E-4

test pattern 91;
 output 1 = 0.08062230384998545
 output 2 = 0.19812188391325436
 output 3 = 0.08004476988200943

test pattern 92;

 output 1 = 0.534875725900468
 output 2 = 0.21502694488738297
 output 3 = 0.0011328849247770703

test pattern 93;
 output 1 = 0.024700227821107396
 output 2 = 0.9391101072360561
 output 3 = 0.12230538055516832

test pattern 94;
 output 1 = 0.6728882438421318
 output 2 = 0.9868531902295898
 output 3 = 0.02048666424345231

test pattern 95;
 output 1 = 0.10437187999162718
 output 2 = 0.8453120456281022
 output 3 = 0.2555092834934636

test pattern 96;
 output 1 = 0.6302423871086705
 output 2 = 0.9831554907223627
 output 3 = 0.024368370412945782

test pattern 97;
 output 1 = 0.024042225472419347
 output 2 = 0.9333718646718716
 output 3 = 0.1276392397680674

test pattern 98;
 output 1 = 0.6119503031851801
 output 2 = 0.9830350443406126
 output 3 = 0.021311745463885468

test pattern 99;
 output 1 = 0.00557105204392507
 output 2 = 0.8048782553093347
 output 3 = 0.2936914501026188

test pattern 100;
 output 1 = 0.5554720894937253
 output 2 = 0.8924225706221214
 output 3 = 0.0690056008075765

getting network (difference) error given 
test inputs...
test pattern 1;
 error = 0.03668992282369006

test pattern 2;
 error = 0.046178291125306165

test pattern 3;
 error = 1.8234353526235405

test pattern 4;
 error = 1.5437276696885354

test pattern 5;
 error = 0.05929397376926465

test pattern 6;
 error = 0.05149287648228948

test pattern 7;
 error = 0.396150542659639

test pattern 8;
 error = 0.052626440336806087

test pattern 9;
 error = 0.060597571445414326

test pattern 10;
 error = 0.0517437226078327
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test pattern 11;
 error = 1.108182413450805

test pattern 12;
 error = 0.6613168539004957

test pattern 13;
 error = 0.10547920983654724

test pattern 14;
 error = 0.3229727315533869

test pattern 15;
 error = 0.2515799048193089

test pattern 16;
 error = 0.08866605609627842

test pattern 17;
 error = 0.17027345904918478

test pattern 18;
 error = 0.16554684171620548

test pattern 19;
 error = 1.1822896635412659

test pattern 20;
 error = 0.9758167064459018

test pattern 21;
 error = 0.07929688879972979

test pattern 22;
 error = 0.06442509686397797

test pattern 23;
 error = 0.17547182705570324

test pattern 24;
 error = 0.06323071016433608

test pattern 25;
 error = 0.08728361707691415

test pattern 26;
 error = 0.0528700008861596

test pattern 27;
 error = 0.6427744516059148

test pattern 28;
 error = 0.43113258037737967

test pattern 29;
 error = 0.1250828783973472

test pattern 30;
 error = 0.2154474161840617

test pattern 31;
 error = 0.1677963487907559

test pattern 32;
 error = 0.22402452739914636

test pattern 33;
 error = 0.1447385710485266

test pattern 34;
 error = 0.3487865286815315

test pattern 35;
 error = 0.4576128899989434

test pattern 36;
 error = 0.5823941894746226

test pattern 37;
 error = 0.12742348260199227

test pattern 38;
 error = 0.14390460411096442

test pattern 39;
 error = 0.14750805372649758

test pattern 40;
 error = 0.11458231389096152

test pattern 41;
 error = 0.09217375640549424

test pattern 42;
 error = 0.0782907226784072

test pattern 43;
 error = 0.5849511898102607

test pattern 44;
 error = 0.6250146447410335

test pattern 45;
 error = 0.13515493953065688

test pattern 46;
 error = 0.3131083323207552

test pattern 47;
 error = 0.10466934121573421

test pattern 48;
 error = 0.2660278697644023

test pattern 49;
 error = 0.13697546690017082

test pattern 50;
 error = 0.24904205640575217

test pattern 51;
 error = 0.9964608396567135

test pattern 52;
 error = 0.5465051056470973

test pattern 53;
 error = 0.13764531090523419

test pattern 54;
 error = 0.14741618433712325

test pattern 55;
 error = 0.2568890762861641

test pattern 56;
 error = 0.14432361021818618

test pattern 57;
 error = 0.16444813459065039

test pattern 58;
 error = 0.1031044289473265

test pattern 59;
 error = 0.6176691430714977

test pattern 60;
 error = 0.5943104853185031

test pattern 61;
 error = 0.1466720038445123

test pattern 62;
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 error = 0.3462750340842342

test pattern 63;
 error = 0.26858052346386807

test pattern 64;
 error = 0.388989858604585

test pattern 65;
 error = 0.16383158932145106

test pattern 66;
 error = 0.3451283972853558

test pattern 67;
 error = 1.0201448251656293

test pattern 68;
 error = 0.6329458125201705

test pattern 69;
 error = 0.08266515789619938

test pattern 70;
 error = 0.06143550561048063

test pattern 71;
 error = 0.6011279901535854

test pattern 72;
 error = 0.06145376144801673

test pattern 73;
 error = 0.08278958152910594

test pattern 74;
 error = 0.06086365949910361

test pattern 75;
 error = 1.1704905088497592

test pattern 76;
 error = 0.5849786198251706

test pattern 77;
 error = 0.24795142418709676

test pattern 78;
 error = 0.31635487295203635

test pattern 79;
 error = 0.7080004738544137

test pattern 80;
 error = 0.34432521342166955

test pattern 81;
 error = 0.2378855630790579

test pattern 82;
 error = 0.3360515950938876

test pattern 83;
 error = 1.9482421162698045

test pattern 84;
 error = 0.7388348424024331

test pattern 85;
 error = 0.06952670319682083

test pattern 86;
 error = 0.04916482822451092

test pattern 87;
 error = 0.43495984310106245

test pattern 88;
 error = 0.04877750716440099

test pattern 89;
 error = 0.06941000442360602

test pattern 90;
 error = 0.04931472778276652

test pattern 91;
 error = 0.35878895764524926

test pattern 92;
 error = 0.681284103911692

test pattern 93;
 error = 0.20789550114021957

test pattern 94;
 error = 0.3607452301717307

test pattern 95;
 error = 0.5145691178569884

test pattern 96;
 error = 0.4109704925819125

test pattern 97;
 error = 0.21830960056861515

test pattern 98;
 error = 0.4263263979380928

test pattern 99;
 error = 1.1041407574558786

test pattern 100;
 error = 1.4059560819359727

 average error = 0.3715018660531947

end

->
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APPENDIX C – Test Parameters

1.  Neural Network

1) Test ww1-network-2: 
2) Test ww1-network-3: 

backpropagation step constant = 0.1 
number of epochs = 1000

2.  Modular Network

1) Test ww1-modular-4:  

expert backpropagation step constant = 0.1
training algorithm = winner-takes-all
step constant = 0.1
memory constant = 0.1
improvement constant = 1.0
number of epochs = 1000

3.  Genetic Algorithm

1) Test ww1-breeder-1: 

size of population = 6
max. number of layers = 3
max. number of nodes per layer = 5
fitness evaluator = LinearEvaluator
selection algorithm = FitnessProportionate
crossover operation = CrossoverOperation1
mutation algorithm = MutateAll
number of epochs of training before evaluation = 200
fitness threshold = 0.95
percentage replaced = 50
percentage mutated = 10

2) Test ww1-breeder-4: 

size of population = 6
max. number of layers = 3
max. number of nodes per layer = 5
fitness evalutaor = SquareEvaluator
selection algorithm = FitnessProportionate
crossover operation = CrossoverOperation1
mutation algorithm = MutateNodes

1
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number of epochs of training before evaluation = 100
fitness threshold = 0.9
percentage replaced = 50
percentage mutated = 50

4.  Modular Breeder

number of modular networks = 5
desired error = 0.1
percentage improvement that breeder must achieve = 30
module training step constant = 0.1
modular network training memory constant = 0.1
modular network training step constant = 0.1
modular network training improvement constant = 1.0
percentage of population to replace = 50

1) Test ww1-modbreeder-3:

initial number of modules in each network = 3
maximum number of layers in randomly generated networks = 3
maximum number of nodes per layer in randomly generated networks = 6
number of epochs to train modular networks = 100
number of epochs to train each population member = 100
percentage of population to mutate = 20

2) Test ww1-modbreeder-4

initial number of modules in each network = 3
maximum number of layers in randomly generated networks = 3
maximum number of nodes per layer in randomly generated networks = 6
number of epochs to train modular networks = 100
number of epochs to train each population member = 100
percentage of population to mutate = 20 

3) Test ww1-modbreeder-6

initial number of modules in each network = 3
maximum number of layers in randomly generated networks = 2
maximum number of nodes per layer in randomly generated networks = 5
number of epochs to train modular networks = 50
number of epochs to train each population member = 50
percentage of population to mutate = 50
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