Modeling Upper Body Movement
in a Virtual Environment using a
Neural Network

A thesis submitted to the University of Manchester for
the degree of MSc in Advanced Computer Science in

the Faculty of Science
2002
Stephan James Dale

Department of Computer Science

Contents

1 Introduction 14
1.1 Overview e 14
1.2 Project Description o L. 16
1.3 Previous Worko 16

1.3.1 Neural Networks 18
1.4 My Approach 20

2 My Approach 23

2.1 Set-upo 23
2.1.1 Hardware 23
2.1.2 User Set-up oo 24

2.2 User Integration in the Virtual Environment 26
221 View 26
222 Control 27
2.2.3 Other Considerations 28

2.3 Program Cycle o 28

2.4 Mapping from Sensors to Avatar L. 29
241 Avatar L 29
242 Offsets L 30

24.3 My Upper Body Model 33

2.4.4 Mapping from model to avatar L. 35
2.5 Arm Positioning o oo 37
2.5.1 Neural Network Prediction 37
2.5.2 Inverse Kinematic Correction 45
2.5.3 Other Considerations 47
Neural Networks Introduction 48
3.1 Structure 48
3.1.1 Perceptrono 48
3.1.2 Multi-Layered Perceptron (MLP) 51
3.2 Design L 52
3.3 Tralning 52
3.3.1 Validation oo o 54
3.4 Testing 95
3.5 Error Measurements 55
Experimental Procedure 57
4.1 Experiments Lo 57
4.1.1 'The 3 Experiments o7
4.1.2 Experimental Aim 59
4.1.3 Positional Error 000000 59
4.1.4 Network Notation, 60
4.2 Data Gatheringo o 60
421 Random Task 60
4.2.2 Rotation Task oL o000 61
423 Procedureo Lo 62

4.3 Data Preparation

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6

Translation,
Duplicate Patterns
Anomalous Patterns
Normalisation
Randomisation

Forming Training, Validation, and Testing data sets.

5 Experiment 1 - Initial Exploration
5.1 Aim . . L.
5.2 Description Lo Lo L
5.3 Imitial Resultso
5.3.1 Arm Data Translation
5.4 Re-trainingo
6 Experiment 2 - Exploration of Best network Structures
6.1 Aim
6.2 Description Lo
6.3 User-Specific vs User-Independent
6.4 Task-Specific vs Task-Independent
7 Experiment 3 - Testing Generalisation
71 Aim ..o
7.2 Description
73 Results. 0 L

68
68
68
70
74
75

80
80
80
81
84

8 Conclusions 101

8.1
8.2

8.3

8.4

Discussion Lo 101
Improvements 103
8.2.1 Yaw Specification 103
8.2.2 IK Correction 103
Future Work 103
8.3.1 Neural Network, 103
83.2 Legs 104
Summary . . . o.o. .o e 104

List of Figures

1.1
1.2
1.3
14

21
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

Simple human body model. 15
Amin & Earnshaw’s approach. 19
Beeharee & Hubbold’s approach. 20
Pouring action. oo 21
Equipment. o 24
User measurements.o 25
Equipment setup for data gathering. 25
Equipment setup for normal use. 26
Chair position Lo 27
Possible views.o 28
Program structure 0oL 29
MAVERIK avatar, 30
Avatar part co-ordinate systems. L. 31
Sensor offsetso 32
Torso model. L 34
Mapping from model to avatar. 36
Network inputs. 38
Network outputs. 39
The neural network as a “black box”. 40

2.16
2.17
2.18
2.19
2.20

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

5.1

5.2

9.3
5.4
9.5
5.6

Example orientation. L. 40
Determining plane. o Lo L 44
Elbow plane triangle. 44
Calculation of correct upper/lower arm angle. 46
Rotation of predicted upper arm. 46
The Perceptrono o 49
Stepping functiono 50
AND Logic Task oo 50
XOR Logic Task 50
Sigmoid function.o 51
MLP . . . 52
Weight space.o 53
Early Stopping 54
Random task.o 61
Rotation task. 62
High Rotation task., 63
Data gathered. oo L 64
Initial performance of the 6x24x24x2 network on user A per-

forming the random task. oL 71

The best network of experiment 1 (Initial Results) - training

and testing performance of the 6x24x24x2 network 72
Desired yaw and the network’s prediction. 73
Change in upper arm rotation specification. 74
Movement required to create jumps in yaw between 0 and 1. . . 75
Example of yaw data from the Random task. 76

7

5.7
5.8

6.1

6.2
6.3

6.4
6.5
6.6
6.7

6.8

7.1

7.2
7.3

7.4

Results of re-training 6x24x24x2 network. 7

Performance of re-trained 6x24x24x2 net on A-rand-1 data. . . . 79

Pitch and yaw prediction of 6x8x8x2 user-specific network on
B-rot-3. 83

Positional error of 6x8x8x2 user-specific network on B-rot-3. . . 84

Pitch and yaw prediction of 6x8x8x2 user-independent network
onB-rot-3.. 85

Positional error of 6x8x8x2 user-independent network on B-rot-3. 86

Performance of 6x8x8x2 task-specific network on B-rot-3. 88
Positional error of 6x8x8x2 task-specific network on B-rot-3. . . 89
Pitch and yaw prediction of 6x8x8x2 task-independent network

on B-rot-3. 90

Positional error of 6x8x8x2 task-independent network on B-rot-3. 91

Pitch and yaw prediction of (6x8x8x2) network from scenario
3aon H-rot-1. 97

Positional error of (6x8x8x2) network from scenario 3a on H-rot-1. 98

Pitch and yaw prediction of (6x8x8x2) network from scenario
3bon H-rot-1. 99

Positional error of (6x8x8x2) network from scenario 3b on H-rot-1.100

Avatar scaling.. oL Lo 107
Torso correction. Lo 108
Offset calculations. oL 109
Determining lower armroll. 112

List of Tables

5.1
5.2
9.3
5.4

6.1
6.2
6.3
6.4

7.1
7.2
7.3

Network structures for experiment 1. 69
Data used in experiment 1. 69
Network errors for experiment 1, initial results. 70
Re-trained network errors for experiment 1. 76
Network structures for experiment 2. 81
Data used in experiment 2.o 81
Performance of 6x8x8x2 ANN. 82
Mean positional errors of 6x8x8x2 network. 86
Training data in experiment 3. 93
Testing data in experiment 3. 94
6x8x8x2 performance for the 3 scenarios. 95

Abstract

The realistic animation of humans in a virtual environment is a complex prob-
lem. Modern applications require a great deal of interaction, and the anima-
tion of a user is expected to be realistic and accurate. This is particularly
true of multi-user collaborative applications, where a user must react to the

movements of other users in the environment.

Short of tracking the entire body, an approach that is often not viable, the
movements of certain parts of the body must be approximated. Traditional
approaches are either too slow due to high computational overheads or unreal-
istic due to the constraints that have to be imposed for real-time performance.
This project explores the use of Neural Networks. After an initial training
process, they are small, fast, and can model the dynamics of physical systems

with a great deal of success.

Sensors track the movement of the user’s head, hands and torso. A neural
network is used instead of a sensor to predict the orientation of the user’s upper
arm. Finally, an inverse kinematics based algorithm corrects any inaccurate
predictions to ensure that the user’s hands are always in the correct place.
The results show that after suitable training, a neural network can predict the

movement of the arm to a high degree of accuracy.

10

Declaration

No portion of the work referred to in this thesis has been submitted in sup-
port of an application for another degree or qualification of this or any other

university or institute of learning.

11

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instructions
given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made
in accordance with such instructions may not be made without permission (in
writing) of the Author.

The ownership of any intellectual property rights which may be described in
this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third
parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the Head of the Department of Computer

Science.

12

Acknowledgements

The work described in this project was supervised by

Dr Roger Hubbold,
Advanced Interfaces Group,
Department of Computer Science,

University of Manchester.

I would like to thank all members of the Advanced Interfaces Group for their

support.

13

Chapter 1
Introduction

This chapter introduces the project. It provides an overview of virtual humans

and discusses relevant previous work.

1.1 Overview

Virtual humans are representations of humans in a virtual environment. There
is a huge range in the “virtual fidelity” of such representations [2]. Human ap-
pearance, movement and behaviour are modeled to different degrees depending
on the requirements of the application. A virtual human can be a character
with computer controlled movements and behaviour [31], or simply an avatar
animated by tracking the user’s movement [25]. In either case, the high degree
of interaction required by most virtual reality applications mean that an ac-
curate representation of movement is essential. The user’s hands must appear
in the correct place in order to manipulate objects, their limbs should have a
smooth realistic motion and avoid collision [24], and their body must travel
in the correct direction at the correct time. This is particularly true of multi-
user collaborative environments, where a user must react to the movements of
other users in the environment. If the movement of a user’s avatar does not
match their actual movement then effective collaboration will be difficult. A
good example is the simulation of a stretcher evacuation [16], where two people

are carrying a third person on a stretcher. In this case, the movement of one

14

user directly influences that of the second because they are “connected” by the

stretcher.

The creation of a virtual human requires a model of the body and some method
of controlling its movement. The model is usually skeletal, so consists of many
parts connected by joints, see figure 1.1. Each joint has several degrees of
freedom (DOF). The range of motion possible with even a simple model is vast,
making realistic animation a challenging task. With the added requirement of
real-time animation, few systems are capable of producing movement that can

go undetected by the human eye as computer generated.

DOF

Figure 1.1: Simple human body model.

The most straight forward way of animating human movement in real time
is to track the entire body. There are several reasons why this is not always

practical:

e The hardware needed to track the entire body is expensive and above

the budget of most educational establishments.

e Cheaper tracking systems use cables that restrict movement. The more

sensors attached to the body, the more cables there are to avoid.

e An increase in the amount of sensors leads to an increase in the required
bandwidth and hence an increase in hardware needed to cope with the

requirement.

15

e Qutside-in systems that use cameras and complicated image recogni-
tion software have a large computational requirement that could be used
rendering the virtual environment or performing other important calcu-

lations.

This project researches a new method of reducing the amount of sensors re-
quired to track the body by using an Artificial Neural Network (ANN) to
approximate the readings of certain sensors, thereby replacing them. This will
reduce the cost of the setup by decreasing the amount of equipment needed,
increase the speed at which a user can start using the virtual environment
and increase their freedom of movement by reducing the number of sensors
attached to their body.

1.2 Project Description

The project aims to produce a system capable of real-time animation of the
upper body, with the hands and torso tracked using sensors and the upper
arm positioned by a neural network. Setup and use of the system should be
quick and easy. Overall, I aim to produce an “upper body tracking system in
a box”, where a user can quickly attach some sensors to their body, start the

program, and see their accurately animated avatar.

A neural network must be found that is capable of the real-time prediction
of upper arm orientation. The project will explore different neural networks
and provide estimates of their performance when applied in a range of mock
real-world situations. Ideally, a network will be able to predict upper arm
orientation for a range of different tasks and users. Its accuracy should be
within the range of human tolerance to error, initial estimates of which have
been determined by A. Beeharee [3].

1.3 Previous Work

There are many approaches to virtual human animation [30]:

16

e Motion Capture [6, 25| gathers data from an actor performing set
motions. The data can be used to create very life-like movements but
can not be easily generalised to create new ones. Motion capture data is
often used with other techniques, for example to create the poses required

by key-framing.

e Key-framing! [23] and other interpolation based techniques [32] rely on
an animator to set the location of various control points on the virtual
human to create a number of poses, or key-frames. The animation is cre-
ated by interpolating movement between these key-frames. Key-framing
can create very complex motion but requires an experienced animator to
define a set of poses and the transition between them. Motion capture

data can be used to help create the poses.

¢ Dynamic Simulation [34] uses complicated models to simulate the dy-
namics of a physical system, in this case the dynamics of human move-
ment. This technique creates physically accurate movement useful for
applications that require the virtual humans to respond to a changing
environment. The complexity of the model prevents real-time perfor-

mamnce.

e Forward Kinematics takes the joint parameter space of a linked struc-
ture and computes the position of its end-effector in Cartesian space.
Inverse Kinematics (IK) [33, 8| does the opposite of this and com-
putes the joint parameters from the position of the end-effector. A set
of constraints govern the range of possible motion. As with dynamic
simulation, the movements are physically sound. Forward Kinematics
is good for defining complex motions but error propagation makes it
difficult to reliably position an end-effector on a target. 1K has found
more application in systems that require this goal-oriented motion. It
is a good approach for modelling periodic motion, for example walking
[19, 9]. However, other more complicated movements, such as that of the

arm, can appear “mechanical”.

In full, this approach is known as Parametric Key-frame Animation and is not to be
confused with the 2D key-framing used by the cartoon industry.

17

Applications will often use more than one approach to create the desired effect.
For example, the AGENTIib environment integrates Motion Capture, Key-
framing, Dynamic Simulation and Inverse Kinematics to animate an avatar in

real-time [7].

1.3.1 Neural Networks

Neural networks have been used successfully in a wide range of applications
such as gesture recognition [20] and robot control [26]. The application of
neural networks to virtual human animation is recent, but it is a promising
technique that has produced good results from the few people that have done
so. For those unfamiliar with neural networks, suffice to say that they consist
of an interconnected network of simple processing units, resulting in a system
capable of learning highly complex tasks. At this stage they can be thought
of as a “black box” that accepts a number of inputs and produces a number of
outputs. A full description of the neural network used in this project is given
in chapter 3.

One example of the use of neural networks is the NeuroAnimator system|12, 11|
which uses a network to emulate physics-based models. Essentially they encode
the model in the network to produce a system that no longer has to perform
the complicated time-consuming calculations required by the model. Their
results show that the network performs well. However, the movements that
the network generates will have the same properties as the model it emulates,

and hence they will not be as natural as one would hope for.

The use of a neural networks for real-time avatar control is somewhat different.
In this case the neural network serves as more of a sensor replacement. A
neural network learns the position of a particular body part given the position
of other body parts. Literature on this application of neural networks is sparse.
I will discuss two papers, “Enhanced Avatar Control Using Neural Networks”
by H. Amin and R. Earnshaw [1], and “Real-time Avatar Control with a Neural
Network” by A. Beeharee and R. Hubbold [4]. Both approaches use a common
form of neural network, the Multi-layer Perceptron (MLP) (described in section
3.1.2).

18

Amin & Earnshaw

Amin & Earnshaw’s method uses a MLP whose inputs are the position of the
wrist and outputs are the position of the elbow, both in Cartesian space and
relative to the shoulder, see figure 1.2. The lengths of the avatar’s arms are
initially unconstrained. The neural network predicts the position of the elbow,
and a real-time algorithm called SHAKE, based on a subset of IK, corrects

any network predictions that would lead to inaccurate arm lengths.

(xa Y, Z)elbow
S N

Origin MLP

(377 Y, Z)wm'st

(l"a Y, Z)elbow

(a) Neural Network (b) Inputs
and outputs

Figure 1.2: Amin & Earnshaw’s approach.

Their results are good, showing that the network can produce arm movements
that are extremely close to the actual movements of the user. However, whilst
their network returns the position of the elbow in Cartesian space they use this
information to model the orientation of the elbow with respect to the position
of the end-effectors of the arm. This is a simpler problem than modelling the

position of the elbow.

Beeharee & Hubbold

Beeharee & Hubbold’s paper is taken from work by Ashwin Beeharee in his
research for his Masters degree [3], which in turn built upon previous work
carried out by Alan Beverage in 1998 [5]. They used a larger MLP. They also

19

use a network to output the position of the elbow. However, unlike Amin and
Earnshaw’s approach the inputs consist of the rotation of the hand as well as
the position of the wrist, see figure 1.3. The larger network size is perhaps due

to the increased complexity of the task due to the inclusion of hand rotation.

(377 Y, Z)elbow

(7,25 Y) hana T T T

MLP
(%, Y, 2) etbow
(Ta P, y)hand
(.’E, Y, Z)wrist
(a) Neural Network (b) Inputs and

outputs
Figure 1.3: Beeharee & Hubbold’s approach.

Their preliminary studies found that humans can tolerate errors of up to 2
inches in the position of the elbow. Their results show that the neural network

can make predictions within these limits.

1.4 My Approach

My approach is similar to the both of the neural network techniques previously

mentioned. I have adopted what I feel to be the best properties from each.

Beeharee & Hubbold’s approach uses hand rotation as inputs into the network,
as well as wrist position. The use of hand rotation has obvious advantages in
dealing with movements that require rotational movement of the hand. This
rotation plays a large part in the position of the elbow. You only need to look
at the pouring action to see that rotation of the hand results in change in elbow
position, as illustrated in figure 1.4. Because of the influence on arm position,

I felt it was necessary to include hand rotation as well as wrist position in

20

the network inputs. It means that the network will learn a greater range of
actions, which in turn means that the network can be used for a greater variety
of tasks.

Figure 1.4: Pouring action.

Both approaches use a network to give to position of the elbow in space in
Cartesian co-ordinates. However, since the users dimensions are known (they
are needed to normalise the data for the network, see section 2.5.1) then the
position of their elbow can be specified using rotation by pitch and yaw, requir-
ing only a simple calculation to map from orientation to position (described
in section ?7?). This means that the network will have to learn a mapping to
only 2 rather than 3 outputs. Hopefully the simplification of the problem will

lead to a smaller network and hence a decrease in the computation required.

In neither approach does the rotation of the torso directly effect the data that
the network is expected to learn. The position of the hand is calculated relative
to the position of the shoulder in the world coordinate system. This means that
the user is expected to keep their torso rigid. For instance, consider a person
who first holds their hand in front of their chest, then rotates at the waist. The
position of their hand relative to the shoulder in world co-ordinates changes,
but their upper body pose does not. I calculate the position and orientation
of the hand, and the orientation of the upper arm, relative to the torso’s co-
ordinate system. This means that the user is free to move their upper body

as they wish.

In summary, the neural network I will use will take hand position and ori-
entation, and produce outputs that give the orientation of the upper arm

(specifically pitch and yaw). The torso is also animated. Measurements of

21

hand position and orientation, and the upper arm orientation, is relative to
the torso’s co-ordinate system. The method is described in detail in chapter
2.

22

Chapter 2
My Approach

My approach feeds the hand position and orientation to a neural network which
predicts the orientation of the user’s upper arm. All measurements are relative
to the torso’s co-ordinate system. A basic Inverse Kinematic algorithm ensures
the hand is in the correct place regardless of the networks prediction of arm

orientation. This chapter will describe the details of this implementation®.

The code was written in C and used the MAVERIK virtual reality libraries
[14, 15] and Jeff Shufelt’s backpropagation library [28].

2.1 Set-up

2.1.1 Hardware

Figure 2.1 shows the hardware used in the project. It consists of the Virtual
Research Systems V8 Head Mount Display (HMD), a Polhemus Long Ranger
emitter and several spatial sensors (receivers), connected to a Polhemus Fast-
Track tracking system. In total, 5 sensors are available but only 4 can be
tracked at any one time. One is mounted on the HMD to track head move-
ment, two are coupled with Division 3D mice to track hand movement, one is
fixed on a velcro strap for attaching to the upper arm, and one is fixed to a
belt so that it can be attached to the chest

Tt is assumed that the reader has knowledge of basic matrix and vector arithmetic.

23

(a) V8 HMD (b) Polhemus tracker (c) FastTrack tracking
system

Figure 2.1: Equipment.

2.1.2 User Set-up
User Measurement

Before the sensors are attached to the body, the user’s shoulder width [;, upper
arm length [,,, and lower arm length L,;, are measured, as shown in figure 2.2.
These are needed to scale the avatar to meet the user’s proportions (section
2.12) and to normalise the data that will be presented to the neural network
(section 2.5.1). The measurements are stored in a file so that they can be
easily loaded when required. The users dimensions are tabulated in appendix
C, section C.1.

Attaching Sensors

Figure 2.3 shows the set-up of the equipment when gathering data, and figure
2.4 shows the set-up for normal use when the neural network determines the
elbow position. The user sits facing the Polhemus emitter. For data gathering
(section 4.2.3), the user wears the HMD, a torso sensor mounted on their chest,
a 3D mouse in their right hand, and a sensor attached to their upper arm. For

normal use of the system, when the neural network is predicting upper arm

24

Figure 2.2: User measurements.

orientation, the user replaces the upper arm sensor with another 3D mouse

held in their left hand to allow both arms to be animated.

A/HMD sensor

S
SESS
Velvet sensor 1

Polhemus emitter
Velvet sensor 2
3D mouse

Figure 2.3: Equipment setup for data gathering.

Calibration Range

In practice the effective range of the Polhemus tracker covers and an area of
about 22 meters. It is possible to move out of range, in which case the move-

ment of the avatar freezes. To minimise the likelihood of this it is necessary

25

/HMD sensor

A

3D mouse 2

e

Velvet sensor

3D mouse 1 —

Figure 2.4: Equipment setup for normal use.

to define a set location where the user must be seated (see figure 2.5). During
data gathering (section 4.2.3) the participants were told that if they witness
the avatar freezing they should move back towards their starting position until
the avatar becomes animated again, and that they should avoid that area of
space in the future. This rarely occurred, and was only a problem for the taller
subjects (the tallest of which was 6’5”). People of average height experience
no problems unless they stretch to reach an object, or move their arm below
the seat of the chair. To help prevent this the participants were given spe-
cific instructions for use. Additionally, the data preparation stage removes any

readings that are in any way anomalous (see section 4.3.3).

The accuracy of the tracker within the calibrated area is roughly +2 centime-

ters.

2.2 User Integration in the Virtual Environment

2.2.1 View

The user has a choice of viewpoints. In use the user is free to switch between

viewpoints as desired, but when gathering data as realistic a view as possible

26

Room

Calibrated area

T '/

Pol hemusiemi tter

Figure 2.5: Chair position

is desired hence they see from their virtual eyes?. Figure 2.6 shows two of the
possible views that were provided, the latter used when gathering data from

the participants.

2.2.2 Control

The user can move about the environment by pressing buttons on the 3D
mouse. The right hand controls forward /backward motion, and the left hand
controls left /right motion. User control of avatar motion was disabled during
data gathering so that all users remained in the same position in the virtual

environment.

The user can grasp objects with either hand by pressing and holding a button
on the 3D mouse. Only a single object can be held in each hand at any one

time.

2 Although not exactly - the eyes are seen to be fixed points, as with most VR applications.

27

(a) View fixed above avatar (b) View from eyes

Figure 2.6: Possible views.
2.2.3 Other Considerations

The environment provided by VR is not accurate to the real-world. For this
reason an amount of inaccuracy can be introduced to the environment without

the user noticing [27].

It is relatively strenuous to be immersed in the environment for long lengths

of time, for various reasons;

e Prolonged use of the HMD and the 3D mice can be tiring because of
their weight.

e The user is looking at a screen that is positioned very close to the eyes

and displays with a low frequency and low resolution.

e The user is essentially being “tricked” into seeing 3 dimensions, a process
that does not present the user with the exact images and focus that

would be experienced in the real-world.

2.3 Program Cycle

The program has the structure shown in figure 2.7. The sensors are con-

tinuously polled to get their position and orientations. From this data, the

28

position and orientation of the hands can be calculated relative to the torso’s
co-ordinate system (section 2.4). A neural network predicts the rotation of the
upper arm (section 2.5.1) which is corrected by a basic IK algorithm to ensure

that the hands are always in the correct place (section 2.5.2).

Sensor Data
Position Avatar
ANN Prediction
Torso Model
IK Correction

Figure 2.7: Program structure

2.4 Mapping from Sensors to Avatar

2.4.1 Avatar

An avatar is a virtual representation of the user’s body. MAVERIK provides a
simple human avatar that, with some extensions, is adequate for my research.
I did not want to modify the avatar or any of the MAVERIK code behind
its implementation, but rather produce a program that uses the library in its
release form. If necessary my code can be later integrated into the MAVERIK
library.

Structure

The avatar is built up of 19 parts that approximate a male human body. The

parts are of simple form as they are not required to be accurate representations

29

of the body, but to provide a simple representation of a human for populating

virtual environments. This structure of the avatar is shown in figure 2.8.

Head
Neck Clavicle
Upper Arm
Upper Torso PP
Lower Arm
Lower Torso Hand
Hips Upper Leg
Lower Leg
Foot

Figure 2.8: MAVERIK avatar

The parts are relative to one another, with the root at the hips. So the
position and orientation of the lower torso is relative to the hips, the upper
torso is relative to the lower torso, the neck is relative to the upper torso, and

SO On.

Each part has associated with it 2 matrices. One specifies the part’s position
and the other specifies its orientation. The co-ordinate systems of some avatar
parts are shown in figure 2.9, which illustrates the co-ordinate systems of the
right upper arm and the hands. The direction of the axes are the same as
those of the upper arm for every part but the hands. Of course, the origins of
the parts differ.

2.4.2 Offsets

Because the sensors are positioned on the surface of the users body, and of-

ten displaced from the exact point that they represent, their positions require

30

xlh

Figure 2.9: Avatar part co-ordinate systems.

offsetting. So, for each sensor there is an associated offset, as shown in fig-
ure 2.10. These map from the polled sensor positions to their corresponding
positions on the torso model (section 2.4.3). They have been kept as simple
as possible to reduce the scope for error. The full mathematical details of the

sensor offsetting are given in appendix A, section A.3.

The torso, arm, and hand offsets are most important in terms of the experi-
ments, as they directly affect the data that is used to train the neural network.
The torso and arm offsets are measured for each user. It is sufficient to mea-
sure the hand offset only once, and apply it to all users, as it simply moves
the position of the sensor from the center of the 3D mouse to the user’s wrist.
The difference in this measurement between users is so small that an accurate

measurement of its change is not practical or indeed possible.

The head sensor offset is of least importance. The position of this sensor gives
the position of the users eye-point, and so an accurate measurement of this
offset leads to an accurate view in VR. The offset does not directly effect the
values of the data gathered but it can effect the way the user performs a task
and so it can still influence the data. The user must feel comfortable with the
view. It was found that the offset could be the same for most users, with a
small amount of tweaking necessary if the user felt the view was unnatural.
To ensure that the view was relatively accurate the user was asked to look at

their shoulders, arms, and torso.

31

(a) Torso sensor (b) Upper arm sensor

A~y
7

(c) HMD offset

Figure 2.10: Sensor offsets

32

Sensor Movement

One problem encountered with the attachment of sensors to the body is that
of sensor movement. This can occur due to movement of the muscle and
skin surrounding the bone, and due to movement of clothes. This introduces
some error. The positions of attachment on the body were chosen to limit the

amount of such movement.

2.4.3 My Upper Body Model

The calculation of an upper body model requires the measurement of the user’s
shoulder width [, upper arm length /,,, and lower arm length /;,. The process
described in section 2.4.2 gives us the positions and orientations of the users
body parts. The vector representing the shoulder can be determined from the
position and orientation of the torso and the width of the shoulders, and the
vectors representing the users arms can then be calculated using the position
of the hand and upper arm and the length of the users upper and lower arm.

Figure 2.11 shows the steps in calculating the model.

All measurements are relative to the torso, the origin O is the (offset) position
of the torso (27, y?, z7), and the world axes X, Y, and Z are the axes of the torso
X7, Y?, and Z7. The position and orientation of any given part is translated
relative to the torso by multiplying the inverse of the torso’s matrix [M}] by

the part’s matrix [My,,| as follows,

(MTorse] = [M7) (Mg,

part

Step 1: The position of the users shoulder S is simply a point the distance
l; along the x-axis in the negative direction, where [, is the length from the

point in-between the users shoulders to their right shoulder,
S =(-1s,0,0)

Step 2: Subtracting the position of the shoulder S from the position of the

33

2. Upper arm vector 3. Lower arm vector

Figure 2.11: Torso model.

34

upper arm A gives us the vector representing the upper arm SA,

SA=A-S

This is extended so that its magnitude is the length of the users upper arm

lua, and shifted along the shoulder, to give us the position of the elbow FE,

SA
E:—ua
S |SA|l
E=SE+S

Alternatively, if the upper arm sensor is not attached, and the neural network
has “replaced” it, E is instead determined by the neural network prediction

and the IK correction algorithm. This is described in section 2.5.

Step 3: The lower arm vector is simply calculated by subtracting the position

of the elbow from the position of the hand,

EFH=H-FE

2.4.4 Mapping from model to avatar

The model must be continuously mapped onto the avatar to produce real-time
movement. A number of problems arise with this task. Firstly, different users
have different dimensions that the avatar must be scaled to meet. Secondly, the
MAVERIK avatar has parts representing the clavicles while the upper body

model I use does not. The desired result is shown in figure 2.12.

Scaling

The default proportions of the avatar only approximate human dimensions.
Scaling of the avatar to meet the users proportions is necessary so that the
user sees a representation of their body that is as accurate as possible. Some

users will have proportions that are closer to those of the avatar than others.

35

Figure 2.12: Mapping from model to avatar.

For instance, the avatar represents a male human body, so female users will

be less accurately represented than male users.

For this research the only parts that need to be scaled are those that correlate
with my torso model, namely the shoulders, upper arm, and lower arm. The
legs are not in use, but they are scaled in proportion to the torso so that the
user is a reasonable distance off the ground and the proportions of the whole
avatar do not look too unusual. The users’ dimensions and a full description

of the scaling process are given in appendix A, sections A.1 and A.2.

Clavicle Removal

The representation of the upper body I am using is very simple. It consists of a
single vector representing the shoulders, directly joined to vectors representing
the upper arms. The MAVERIK avatar has clavicle parts, and since the parts
are relative to one another, the orientation of the avatar’s upper arm must be
specified relative to the corresponding clavicle. This means that the upper arm
orientation of my model must be transformed to give an equivalent orientation
for the MAVERIK avatar. This is simply a matter of transforming the position
of the elbow E by the inverse of the matrix [C] that defines the position and

orientation of the clavicle relative to the torso,

E'=E[C]

36

E’ is then used to determine the orientation of the upper arm part, as described

in section 2.5.

2.5 Arm Positioning

When in use, the position of the elbow is predicted by a neural network rather
than being determined using the position of the upper arm sensor. The network
is given data derived from the model defined in section 2.4.3 as inputs, and
outputs the orientation of the upper arm. A simple IK algorithm then corrects
the predicted orientation to ensure that the user’s hand appears in the correct

place.

2.5.1 Neural Network Prediction
Inputs

As inputs, the neural network accepts the position and orientation of the user’s
hand relative to the torso’s co-ordinate system, shown in figure 2.13. The
position of the hand H has already been determined in the calculation of the
model, section 2.4.3. The orientation is determined by first getting the hand’s

matrix relative to the torso,
relT orso o1—1]
(M}, | = [M7] [M)
and then querying its rotational components fx, 6y, and 6.

Outputs

The network outputs the pitch and yaw of the upper arm relative to the Y and
X axes of the torso’s co-ordinate system, figure 2.14. The pitch « is simply
defined as,

~

a = arccos(—Y o F)

37

Ys Y
0
Z
Z
(a) Vector from back to hand (b) Hand orientation

Figure 2.13: Network inputs.

The calculation of yaw is more complicated. First, the vector E representing
the upper arm must be reflected onto the X7 plane. This is done by setting

its y component to zero,

E¢ = (E.x,0,E.y)
Yaw [is then determined by,

[= arccos(X e Erel)

Next, the direction in which to rotate needs to be determined (i.e. [’s sign).

First a normal to X and E"¢/ is calculated,

norm = X x Eref

If this normal is at 180° to Y then the yaw must be negative. This can be
determined by calculating the dot product between norm and Y, giving us the
cosine of the angle between them,

cos(f) =norimeY

38

If cos(f) = —1 then norm is 180° to Y and the yaw should be negative,

otherwise yaw should be positive,

5= { -3 if cos(f) = —1

B otherwise

(a) Pitch (b) Yaw

Figure 2.14: Network outputs.

Note that a simpler specification of upper arm orientation could have been
used. The use of this rather unusual specification was very necessary to allow
the network to learn the task adequately, as described in section 5.3.1 when

the need to redefine the initial specification became apparent.

The network as a “black box” is shown in figure 2.15.

Data Pre-Processing

To allow the network to predict the upper arm orientation of different users,
regardless of their proportions, the data must first be normalised. This is
because the rotation of the upper arm (pitch and yaw) has the same range for
all users (0° to 360°), while the range of the position of the hand will differ
for different users with different arm lengths. For example, when the users
arm is held straightened, out to their side as shown in figure 2.16 (pitch -90°,
yaw 90°), taller users could have a hand vector H of magnitude 80 cm, while

shorter users could have a hand vector of magnitude 70 cm.

39

>Q
G O

MLP

Ox Oy 04
HxHyH.z

Figure 2.15: The neural network as a “black box”.

) S
80 .r__-
cm 70cm

Figure 2.16: Example orientation.

40

First, the maximum possible magnitude of H is determined from the measure-
ments of the users shoulder width [;, upper arm length [,,, and lower arm

length I,
maxr = lg + lye + lg

This is used to scale H so that it lies in the range -1 to 1,

(iaz)

H|

H° =

where —1 < HS < 1.

The neural network requires inputs in the range 0 to 1, so H® must be mapped

accordingly,
He
H'z = (x) 105
H*.
H"y = (y) 405
H*
2= (Z) 405

the result of which is 0 < H™ < 1, where H" is the final normalised hand

vector.

The orientation of the hand, fx, 6y, and 6, ranges from 0° to 360° . This

must also be mapped to the range 0 to 1,

Ox
o = —
X 7360
Oy
o = ——
Y360

0z
0 = —
Z 360
resultingin 0 < 0% <1,0<60}% <1,and 0 <0% < 1.

The range of the network’s outputs is also 0 to 1. So pitch and yaw, which are
in the range -360°to 360°, are first mapped to the range 0 to 360,

a =

- {a+360 if a<0

o otherwise

b otherwise

ﬁm:{ﬁ+360 if B<0

then scaled to be in the range 0 to 1,

o "

360
n_ B"
b 360

where 0 < a” <1land 0 <" < 1.

Data Post-Processing

The pitch « and yaw (of the upper arm output by the neural network is in
the range 0 to 1. This must be mapped back to degrees in the range 0° to
360°. This is simply achieved by multiplying the output by 360,

a = 01 * 360

42

B = 09 x 360
where 0, and o, are the first and second outputs of the network.

Determining Elbow Position

The position of the elbow E can be determined by taking a —Y vector, first
rotating it by a about the —Z axis, and then rotating it by S about the Y
axis as shown in figure 2.17. This gives us a vector O A indicating the direction
of the elbow. Since we know the length of the upper arm, a triangle can be

formed, as shown in figure 2.18. Calculate the angle between OA and OS,
0 = arccos(OA @ OS) = arccos(OA o —X)

The length |OFE| can be calculated as follows,

OE| = /12 — (I,sin(8))? + 1, cos(9)
So OF can be determined by simply extending OA to this length,
OFE = OA«|OE|

The elbow position can be set at this stage. However, during normal use of
the system the neural network is responsible for the values of upper arm pitch
and yaw, so only a prediction of the elbow position EP™®¢ can be determined.
Because the avatar’s arm is a linked structure and the length of the parts are
fixed, using EP™*? to position the upper arm could prevent the hand appearing
in the correct place. To ensure it appears in the same position as the hand
sensor, an IK correction algorithm is used rotate the upper arm until it has

the correct orientation.

43

O
i
- 7

(a) Pitch (b) Yaw

Figure 2.17: Determining plane.

E

Figure 2.18: Elbow plane triangle.

44

2.5.2 Inverse Kinematic Correction

The most important aspect in animating the users arm is that their hand posi-
tion and orientation is accurate. In a virtual environment, where manipulation
of virtual objects is a necessity, the position of the users hand must be accurate
to allow contact to occur with the object at the correct point. In my system
this is achieved by applying a simple IK algorithm to correct any inaccuracy

in the networks prediction of arm orientation.

The method works by looking at the position of the hand and calculating the
angle that the upper arm should make with the vector from the shoulder to
the hand. The upper arm is positioned using the neural network, and rotated
until it makes the correct angle with the shoulder-to-hand vector. Finally, the

lower arm is positioned.

First, the desired angle between the upper arm and the shoulder-to-hand vector
is calculated. Figure 2.19 shows the triangle made by the shoulder S, elbow
E and hand H. At this point only the correct position of S and H are known
in space, the elbow position determined so far is only a prediction EP"*?. The
angle § between SH and SFE is calculated,

SH=H-S
0 = arccos SHP + iy — b,
B 2|SH|lyq

Next, the predicted upper arm vector is calculated,

SEpred — Epred -8

and the predicted angle 67" and normal norm between SEP™® and SH is

calculated,
6Pr¢d = arccos (SE’EW ° ,5/'1?)

45

norm = SEPred x SH

The difference between 6 and 677¢¢ is calculated,

odiff — Hpred —9

And finally, SEP ¢ is rotated about norm by #%// to produce an orientation
of the upper arm that allows the hand to appear in the correct place, as figure
2.20 shows.

l;pred

Z§pred

Figure 2.20: Rotation of predicted upper arm.

The rotation of the predicted upper arm SEP™*? about norm has the effect
of performing the IK correction in a plane predicted by the neural network.

Hence an element of the network’s prediction remains even if it is inaccurate.

46

2.5.3 Other Considerations
Upper Arm Roll

The network prediction of upper arm orientation does not include its roll. The
added computational cost of its calculation is an unnecessary overhead when

considering the following points;

e The movement of the human upper arm does not roll much in real life.

e People tend not to look at their upper arms directly, but see them only
in their peripheral vision. This means that fixed upper arm roll is not

noticed.

e The user can not easily look at their upper arm in a virtual environment

due to restrictions of their field of view [18].

Lower Arm Roll

The lower arm is much more visible so its roll must be animated. It is easily
determined by observing the rotation of the hand. This is described in detail
in appendix A, section A.4.

Left Arm

The neural networks were created using data from the right arm only. To
allow the orientation of the left arm to be predicted by the same network the
left hand’s position and rotation (input) data is mirrored in the Y Z plane to
represent the equivalent right hand data. This is given to the network whose
output is used to determine an elbow position as normal. This is then mirrored

back to give the equivalent left arm elbow position.

47

Chapter 3
Neural Networks Introduction

This chapter aims to describe the fundamental concepts of neural network
design, training and testing. It will present key concepts that are needed for a

full understanding of the remaining chapters.

For my research I have used a standard type of neural network, the Multi-
Layered Perceptron (MLP). The network is trained via Backpropagation, the
most common and successful training algorithm. The algorithms described
here are those described in the book “Machine Learning” by Tom Mitchell [22].
My neural network code is based on an implementation of these algorithms by
Jeff Shufelt [28].

3.1 Structure

The structure of a MLP is built up of many nodes - single processing units
based on the Perceptron. For this reason it is necessary to first describe Per-
ceptrons, before proceeding to a description of MLPs.

3.1.1 Perceptron

The Perceptron is a single processing unit that is based on the biological neu-

rons that make up the human brain. The structure is shown in figure 3.1. It

48

accepts a number of inputs and outputs an activation if their weighted sum
exceeds some threshold. The inputs have associated weights that indicate
the strength of the connection. These weights are altered during the train-
ing process so that the network can build an internal representation of the

input/output mappings present in the data, i.e. learn it.

z

T2

1 if net > 0

net = 2iowiwi out = { —1 otherwise

Tn

Figure 3.1: The Perceptron

To determine whether the Perceptron fires, each input is multiplied by its

associated weight, and summed to produce the net input into the Perceptron,

n
net = Z W;T;
i=0

They are presented to the Perceptron’s stepping function (shown in figure 3.2).
It simply tests the net input to see if it exceed some pre-defined threshold,

usually 1,

1 if net > 0
out =
—1 otherwise

The problem with Perceptrons is their simplicity. They only produce binary
output, and hence are able to classify only linearly separable data, i.e. data for
which the input space can be separated by a single straight line. For example,
the AND logic task is linearly separable, as shown by figure 3.3. An example
of a simple task that is not linearly separable is the XOR logic task.

49

-1 0 1

Figure 3.2: Stepping function

(€]
(1,0) -4 .

*

©0) ©.1 A

Figure 3.3: AND Logic Task

XOR Problem

The XOR logic task cannot be learnt by a Perceptron as it is not linearly
separable. Figure 3.4 shows the input space, and an example division that
will classify the inputs properly. Note that no possible divisions are linear.
The XOR problem is fundamental as nearly all complex tasks, which would
be useful to solve with a neural network, involve the XOR task in some form

or another.

(€]
(10 -4 .

.
(00 ([CE

Figure 3.4: XOR Logic Task

a0

This problem was solved with the invention of Multi-Layered Perceptron’s,
described in section 3.1.2.

3.1.2 Multi-Layered Perceptron (MLP)

With only slight alteration Perceptrons become the nodes that make up a
Multi-Layered Perceptron (MLP). An MLP must produce a continuous output,
so the stepping function must be changed to one that can do so. Figure
3.5 shows the widely used Sigmoid function!. The output of a node is now

calculated by presenting its weighted input to the Sigmoid function,

out = f(net)
1
A0 R p— ape—

I8

T I

-1 0 1

Figure 3.5: Sigmoid function.

Figure 3.6 shows the structure of a MLP. They are made up of many nodes
organised into layers - an input layer that carries the input pattern, 1 or more
hidden layers, and an output layer that carries the networks prediction of
the desired output pattern. The layers are connected so that the outputs of
one layer feed into the inputs of the next. MLPs are usually fully connected,
meaning that each node in a layer is connected once to every node in the

surrounding layers, as shown by figure 3.6.

!Note that the diagram displays only an approximation of the function.

51

Inputs Hiddenl Hidden20utputs

Figure 3.6: MLP

3.2 Design

There is no set method to design the architecture of a neural network. For
simple problems it can be possible to theorise which architectures could work
well, but for complex problems the designer must rely on their past experience
of similar problems, and trial and error. Rules of thumb are often proposed but
have not been widely adopted due to limitations in their flexibility or indeed

validity.

3.3 Training

Training of the MLP will be performed by a popular and successful gradient

descent training algorithm called Backpropagation.

The network is trained by presenting it with an input pattern 7', calculating
the error of the network by comparing the output of the network @ and the
desired output 7, and adjusting the weights of the network so that on a future
presentation of the pattern the error will be reduced. The presentation of a

set of input-output patterns and the corresponding weight adjustment takes

52

place over an epoch of training. The complete training is carried out over many
such epochs. A learning rate n determines how quickly the network learns by
determining the degree to which the weights are changed during training. A
momentum term « acts to accelerate learning. The training process can be
visualised by imagining the weight space of a network that has only 2 weights to
adjust. This space is shown in figure 3.7. Backpropagation adjusts the weight
in the direction of the steepest gradient? along a path towards the point with
lowest error. The learning rate n determines the size of the steps along this
path, and the momentum term « increases the size of the steps if the gradient
remains steep and decreases it if the gradient starts to level out. The analogy
is that of a ball rolling down a hill. For example, if the weights are initialised
at position A where the gradient is steep and the error is high, the weights are
adjusted by a relatively large amount. As the position approaches B, they are
adjusted in finer amounts until they eventually settle on their final values at

position B, the point of lowest error.

"'z‘z” 'weight-space.dat’ ——
(R
error ""'/,'0,000.‘..
ool T s
A e
r N R L A2
32 o"”ii&i’it,'",',‘lllll’,’,’lili;'
/]
20 O
15
10
5
0
1

Figure 3.7: Weight space.

A full mathematical description of the Backpropagation training algorithm is

given in appendix B.

2Backpropagation is one of a class of learning algorithms called Gradient Descent algo-
rithms.

93

3.3.1 Validation

The errors calculated in training (used to adjust the weights) are indications
of how well the network performs on the data it has “seen”. It is not a good
estimate of the error when tested on a new set of data. To predict how well
the network generalises, i.e. how well it performs on unseen data, the network
must be tested on a set of data that did not contribute in training. This stage
is called wvalidation, the set of data used to determine the error is referred to

as the wvalidation set, and so the error of the network is the wvalidation error.

Early Stopping

Because the validation error is an estimate of how well the network generalises,
it is used to determine when training should stop - i.e. when the validation error
starts to rise, as shown in figure 3.8. Notice that in this case training should
stop when the error on the training data is still decreasing. If the error on the
training data is used as a stopping criteria, the network will over-generalise,
that is, it will have learnt the training data so well as to be detrimental to its
performance on unseen data.

Error —— Trani ng
“~77 Vdidation

Epochs

Stop

Figure 3.8: Early Stopping

o4

3.4 Testing

Testing, like validation, should be performed on another different set of data,
referred to as the testing set. Like validation, testing is used to determine
how well the network performs when trained and in use. The validation error
is a first indication of this, but as it was already presented to the network
during training to determine when it should stop, a different set is needed to

determine the error after training.

It is often the case that validation determines when the network has sufficiently
learnt the data available for training, and testing indicates the networks per-
formance on new data. It is at this stage when the network can be tested on
unusual patterns and those that are not expected to frequently occur. These
patterns should not be used in the training or validation as they represent
cases that the network is not likely to be presented with in use, but for which

it is still good to have an indication of how the network will react.

3.5 Error Measurements

The real error E of a node is simply the difference between the desired (target)

output ¢ and the actual output o of the node,
EFE=t—-o

This gives the error on a single element of the target pattern. The error of the

whole network on an entire target pattern is calculated using the Sum-Squared
Error (SSE),

E,=t,—o,
1 2
SSE=-3 E?
2nEN

95

where ¢, is the target output and o, is the actual output for a node n in the set
of output nodes N. The error of the network for the set of patterns presented
in 1 epoch of training is either the Mean-Squared Error (MSE),

_ YerSSE

MSE
5 size(P)

where the set of patterns P consists of size(P) patterns p, or the Root Mean
Squared (RMS) error,

RMS =vMSE

26

Chapter 4
Experimental Procedure

This chapter begins by introducing 3 experiments that explore the performance
of neural networks at predicting elbow position. It explains the tasks required
to gather data from a number of participants, and the steps needed to prepare

the data for presentation to the neural networks.

4.1 Experiments

4.1.1 The 3 Experiments

There are 3 experiments:

Experiment 1 - Initial Exploration: This is an initial exploration of both
the networks and the data.

e A number of networks of varying complexity will be trained and tested
on the data from each participant in turn. This will determine the extent

to which the networks can approximate the data.

e Testing the networks will serve as an indication of their potential perfor-
mance, and help identify any anomalies in the data that may effect their

ability to learn the data.

o7

e The most promising network structures will be explored further in ex-

periment 2.

Experiment 2 - Exploration of the Best Network Structures: This is
a full exploration of the most promising network structures identified in

experiment 1.

e [t will compare the performance of user-specific networks trained on data
from a single participant with that of user-independent networks trained

on data from all participants.

e Similarly, the performance of task-specific networks trained on data from
a structured task will be compared to that of task-independent networks

trained on data from random arm movements.

e The data used was gathered from participants during a single session so
that error caused by re-attaching the sensors is not present. This allows
comparison of the networks without having to consider the extent to

which error has been introduced by external influences.
e The best network structure identified will be tested in experiment 3.
Experiment 3 - Testing Generalisation: This tests the best network struc-

ture identified in experiment 2 on its generalisation to new users and new

tasks.
e Data for this experiment was gathered in a different session to that which
gathered the training data.

e The ability of the network to generalise to new users will be determined

by testing it on data from a new set of participants.

e The performance of the network on a variation of the structured task will
determine whether it has sufficiently learnt the nature of the movements

required to generalise to slight variations.

o8

e [t will determine the error introduced by re-attaching the sensors by com-
paring the network’s performance on data gathered in the same session
as the training data, with its performance on data gathered in different

session.

e A set of scenarios are introduced to give the expected performance of the
network for a range of possible application requirements.
4.1.2 Experimental Aim

The aim of the experiments is to determine the extent to which neural networks
can learn to predict the orientation of a user’s upper arm given the position

and orientation of their hand.

4.1.3 Positional Error

It is useful to define the positional (real) error of the network as the mean
distance between the target elbow positions and the predicted elbow positions.
The distance between the predicted elbow position Ef,”ed to the target elbow

position E*9¢ of a single pattern p is given by,

: _ target __ popred
Distance, = |E, Eprel|

Over all patterns in a testing set the positional error is given by,

> pep Distance,
size(P)

Error =

where the set of patterns P consists of size(P) patterns p.

The positional errors highlighted in the results chapters are determined when
the IK correction technique is operating, as it would be in normal use of the
system. For comparison the full results in appendix C also gives the perfor-

mance when the IK correction is not in operation.

Some of the graphs later refer to the positional error as the “real” error.

29

4.1.4 Network Notation

A neural network will be notated in the format {number of input nodes }x{number
of nodes in hidden layer 1}x{number of nodes in hidden layer 2}x{number of
output nodes}. So 6x8x8x2 represents a network with 6 input nodes, 2 hid-
den layer with 8 nodes each, and 2 output nodes. A 0 indicates no layer, so
6x8x0x2 represents a network with 6 inputs, a single hidden layer containing

8 nodes, and 2 outputs.

Networks with 2 hidden layers will be referred to as 2-layer networks, similarly

those with only 1 hidden layer will be referred to as 1-layer networks.

4.2 Data Gathering

To facilitate exploration of whether a task-specific or task-independent network
would perform best we require a structured task and a task that produces
random arm movements. The latter, henceforth referred to as the “random”
task, is simply a convenient replacement for saying to the user “move your arms
around randomly”. The structured task, referred to as the “rotation” task due
to the frequent hand rotation, is designed to emulate a real-world application,

and has a predefined structure that requires specific arm movements.

Additionally, to test whether the network can generalise to variations in a
structured task, a modification of the rotation task, called the “high rotation”
task, is defined. This task requires the rotation task to be performed in differ-

ent (higher) region of space.

4.2.1 Random Task

The problem with asking a participant to move their arms around randomly
is that different participants will tend to cover different areas of space and
move their arms in a manner specific to them, often repeating certain motions.
In other words, their movements will not be as random as one wishes. The

random task is designed to allow the participants to visualise the areas of space

60

they have already covered, so that they are more likely to move their arm to
uncovered areas, less likely to cover the same area more than once, and so that

different participants are more likely to cover the same region of space.

The participant was placed in a grid of spheres, shown in figure 4.1, that
disappear on contact with the their hand. The participant was asked to move
their hand over as many spheres as possible. Data was gathered over a period

of 1 minute, which allowed the user to cover most of the space within reach.

(a) Vew from head (b) The grid of spheres from a distance

Figure 4.1: Random task.

4.2.2 Rotation Task

The rotation task is designed to produce the kind of structured movement that
would be generated when performing a real-world task, such as the manipula-

tion of radioactive containers or the assembly of a mechanical part.

The participant was placed in front of 5 cylinders hovering next to one another
at chest height, with a small sphere hovering between the cylinders and their
chest, see figure 4.2. The participant was asked to pick up the right most
cylinder, rotate it 180 degrees and touch the top of it onto the sphere. On
contact with the sphere the cylinder disappears. The participant was asked to
repeat this for each cylinder in turn, moving right to left, until all 5 cylinders

were removed. When they had done so, the participant was asked to place their

61

hand on their lap, at which point the 5 cylinders reappear. The participants
were asked to repeat the above process, except this time moving from left to
right. This was repeated another 2 times, each time moving the opposite way
across the spheres. The movements are similar to the pouring action shown in

figure 1.4, except they also involve displacement of hand position.

(a) View from head (b) Distant view

Figure 4.2: Rotation task.

High Rotation Task

This task is nearly identical to the normal rotation task except the position
of the objects have been raised by 1 meter. A comparison of the screen-shots
from the normal rotation task in figure 4.2 and the high rotation task in figure
4.3 shows the difference between the height of the objects.

This task will produce arm movements similar to those generated when per-
forming the normal rotation task, but in a different area of space. A similar
relationship will exist between the hand data and the upper arm orientation

data, but the values will be offset by a certain degree.

4.2.3 Procedure

The participant sits upright with their upper arm at their side and their lower

arm pointing directly forwards, hand outstretched, as shown in figure 2.2.

62

(a) View from head (b) Distant view

Figure 4.3: High Rotation task.

The participant’s shoulder width, upper arm length, and lower arm length are
measured and stored in a file. The sensors are attached to their body (as shown
in figure 2.3) and they are asked to sit upright as the sensors are initialised.
They perform a trial run of each task to familiarise themselves with what is

required.

Data was gathered in 2 sessions:

Session 1: Data was gathered from a total of 6 participants. Each was asked
to perform the random task 3 times and the rotation task 3 times. This
gives a total of 6 data files per participant. The data is used in all 3

experiments.

Session 2: The sensors were re-attached to the body and the offsets were re-
measured. Data was gathered from a further 8 participants and again
from the original 6. The participants were required to perform the ran-
dom and the rotation tasks once each. Additionally, they were asked to
perform the high rotation task once. This gives a total of 3 data files per
new participant, and an additional 3 files per original participant. The

data is only used in experiment 3.

Immersion in VR can be strenuous, as mentioned in section 2.2. This is par-

ticularly true of the high rotation task as it requires arm movement above

63

the head. The participants were free to stop for a rest if necessary. If any
errors were made performing a task the participant was asked to simply con-
tinue and finish the run. They were not required to repeat the task. Accurate
performance of the task was desired simply to allow the data sets gathered
from different participants to exhibit a similar structure. Note that a slightly
inaccurate performance of the task does not hinder testing and comparison of

the networks.

Specification of Data Gathered

The data gathered differed from that required in the final implementation.
Rather than having the origin at the back and gathering the upper arm yaw
relative to the X axis, the origin was at the shoulder and the yaw was relative
to the Z axis. Figure 4.4 shows the upper arm orientations gathered. A
mathematical description of how the data was calculated will not be provided
as it is essentially identical to the description in section 2.5.1 except that
SFE replaces F, and Z replaces X. Section 5.3.1 justifies the change in the

specification.

(a) Pitch (b) Yaw

Figure 4.4: Data gathered.

64

Categorisation of Data Sets

To allow easy reference of the different data sets gathered, a categorisation
scheme will be adopted. Data from the 6 initial subjects are categorised using
the letters A-F, and the further 8 subjects using G-N. Data from all subjects is
referred to with “all”. These will be followed by “rand” to indicate random task
data, “rot” to indicate rotation task data, or “highrot” to indicate high-rotation
task data. “Both” indicates data from both the random and the rotation tasks.
Finally, a number is used to indicate which of the performances the data was
gathered from. For example, D-rand-2 indicates data from user D performing
the random task for the second time, and A-both-1,2 indicates a set consisting
of data from the first and second performances by user A of both the random

and the rotation tasks.

Sets containing data from more than 1 participant are cut down in size to
contain roughly the same number of patterns as the equivalent set from a
single user. Likewise, sets containing data from more than 1 task are cut down
in size to have the roughly the same number of patterns as a single task. So

all-rand-1,2 contains the same number of patterns as C-rand-1,2.

4.3 Data Preparation

There are various steps needed to prepare the data before it can be presented
to the networks for training and testing. The data must be cleaned, split into
sets, and finally converted from its raw form into a form that is acceptable for
the network. The values of the input patterns must range between 0 and 1, as

must the targets. The steps required are outlined below.

4.3.1 Translation

The first experiment determined that it was necessary to apply a translation
to the data gathered from the participants. Chapter 5 describes and justifies

the translation required.

65

4.3.2 Duplicate Patterns

The data sets often contain duplicate patterns. Their removal is important to
prevent the network over-learning them, which will have the effect of reducing

the generalisation ability of the network.

The main cause of duplicate patterns is a sensor moving out of range, in which
case the tracking daemon that polls the sensor returns identical values until
it is moved back into range. It theoretically could also happen if the user
remains so still that no change in sensor position or orientation is noticed by

the tracker. This however, is unlikely.

4.3.3 Anomalous Patterns

Anomalous patterns, that do not represent sensible positions or orientations,
must not be present in the data sets as their presentation to a network during
training will partially “undo” the learning already achieved. It will adjust
its weights to better classify the bad pattern, moving them away from those

required to classify the other good patterns.

There are various reasons why the data sets may contain anomalous readings.
A sensor moving out of range returns an anomalous reading rather than its
position and orientation before it was out of range. Magnetic field interference
can be created by the unexpected introduction of metal or a magnet, or by
monitor emissions. This unlikely as the calibration of the tracker has accounted
for the presence of any metal and monitors in the laboratory and I was careful
that nothing potentially interfering passed within range of the tracker. Finally,
the data could be corrupted by fluctuations in the bandwidth of the system,
a problem I was unlikely to face but one that is especially relevant with the

increased popularity of networked collaborative environments.

4.3.4 Normalisation

Before the data can be fed to the network, it must undergo normalisation to
convert it into the form required by the network. This process was described

in section 2.5.1.

66

4.3.5 Randomisation

Patterns close to one another are similar as they are generated by movements
in the same part of a motion. This can cause catastrophic interference, where
past knowledge learnt by the network is lost due to the presentation of new
patterns [21]. The interleaving of data is known to prevent this occurring, so

the order of the patterns in the training data file is randomised.

4.3.6 Forming Training, Validation, and Testing data sets.

The final step in data preparation is to combine the data gathered from the
users into the sets needed for training, validation, and testing. The 6 data
sets per user that were first gathered (section 4.2.3) are combined in different
proportions depending on the experiment. The sets are described in chapters

5, 6, and 7 when the experiments themselves are detailed.

In all experiments, the training, validation, and testing sets do not share iden-
tical patterns. As mentioned in sections 3.3.1 and 3.4 it is important that the
network is not validated or tested using data that has already been presented
to it during training for risk of underestimating the error of the network in

practical use.

67

Chapter 5
Experiment 1 - Initial Exploration

This experiment is an initial exploration of both the networks and the data.

5.1 Aim

This experiment aims to determine the extent to which the networks can ap-
proximate the data. The most promising network structures will be identified
for further exploration in experiment 2. It also aims to determine whether
there are any anomalies in the data that may effect the performance of the

networks.

5.2 Description

In total, 10 different network architectures will be explored - 4 networks with
a single hidden layer, and 6 with two hidden layers. The work carried out
in the NeuroAnimator project [12, 11] determined that networks with 1-layer
networks have difficulty modelling the dynamics of physical models. This is
echoed by both Beverage [5] and Beeharee [3] who determined that 1-layer
networks could not model the dynamics of tasks very similar to the ones per-

formed in this project. In response to this a greater range of 2-layer networks

68

‘ # Nodes in hidden layer 1 ‘ # Nodes in hidden layer 2

8

16

24

32

4

8

12

16

20

4
8
12
16
20

24

24

Table 5.1: Network structures for experiment 1.

are tested. A smaller number of 1-layer networks are also tested in order to

validate their predicted failure. The structures are given in table 5.1.

The data was gathered in session 1. Only data from user A is used in this

experiment and it is assumed to be representative of the other participants

(experiment 2, described in chapter 6 explores training with different users).

The data used for training, validation, and testing is tabulated in table 5.2.

Each data set is split into two groups, 90% is used in the training process and

10% is testing data. 10% of the data reserved for the training process is used

for validation. The data undergoes the preparation described in section 4.3,

except for the translation step.

Task | Data set (participant A only) Training process Testing
Training | Validation
Random A-rand-1,2,3 90% 10%
90% | 10%
Rotation A-rot-1,2,3 90% 10%
90% | 10%
Both A-both-1,2,3 90% 10%
0% | 10%

Table 5.2: Data used in experiment 1.

The networks are trained for a total of 10000 epochs, quite sufficient to allow

full observation of learning.

69

5.3 Initial Results

All of the networks have a similar performance, measured as the lowest valida-
tion error at any time during training (see section 3.3.1). The errors, accurate
to £0.01, are tabulated in table 5.3. The network identified as having the most
potential was the largest network (structure 6x24x24x2). The performance of
the network on (un-randomised) data gathered from participant A’s first run

of the random task is shown in figure 5.1.

Network | Lowest validation error (MSE)
Random | Rotation | Both
6x8x2 0.015 0.010 0.013
6x16x2 0.010 0.012 0.012
6x24x2 0.007 0.013 0.010
6x32x2 0.009 0.012 0.010
6x4x4x2 0.015 0.012 0.014
6x8x8x2 0.009 0.010 0.010
6x12x12x2 0.006 0.010 0.009
6x16x16x2 0.007 0.009 0.009
6x20x20x2 0.007 0.009 0.009
6x24x24x2 0.005 0.002 0.008

Table 5.3: Network errors for experiment 1, initial results.

A graph of the training, validation and testing errors of the 6x24x24x2 network
on data from each task is shown in figure 5.2. You can see that there are large
fluctuations in the training and validation error, and while the network has
the potential to achieve a very low error it seems equally likely it could settle
on a higher one. This effect is only observed with the 2-layer networks, with
the exception of the smallest (6x4x4x2). Training of the 1-layer networks
produces smooth error curves, an example of which can be seen in appendix
A. The erratic nature of the 2-layer networks suggests that they are having
difficulty classifying the data, and are possibly attempting to learn something
that the 1-layer networks can not. It seems the dynamics of arm movement
are too complex to be modelled by 1-layer networks and so their exploration

ends here.

The problem was found to originate in the measurement of upper arm orien-

70

0.95

0.9 |-

targét pitch (A-r‘and-l reI.ZS _—
icted pitch (6x24x24x2 on A-ranq-l rel.Z)
\

<
£ 085 ,
o il
0.8 | i
i
“‘, y’".
0.75 - “\u" 4]
07 Il Il Il Il Il Il '\ Il Il
0 200 400 600 800 1000 1200 1400 1600 1800
pattern
(a) Pitch
T
tar]
dicted yaw (6x24;

yaw

800

pattern

I
1400

(b) Yaw

the random task.

Figure 5.1: Initial performance of the 6x24x24x2 network on user A performing

71

1600 1800

Random

0.04 T T T T T T T T T 05 T T T T
training error (6x24x24x2 on A-rand-1,2,3 rel.z) —— testing error (6x24x24x2 on A-rand-1,2,3 rel.z) —+—
validation error (6x24x24x2 on A-rand-1,2,3 rel.Z) -~
0.45 - 4
0035 | 1
04 - -
003 1
035 - —
0.025 1
03 —
8 oo @ 02
= 7] 2 [1
02 —
0.15 - —
01 —
0005
' L 1 0.05 - 1
bl PRIV P YO Lk
. — e ———— . RN i
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 o 100 200 300 400 500 600
epoch pattern
0.03 T T T T T T T T T 05 T T T T T
training error (6x24x24x2 on A-rot-1,2,3 rel.) testing error (6x24x24x2 on A-steph-rot gel.z) —+—
validation error (6x24x24x2 on A-rot-1,2,3 rel.Z)
045 - 4
0025]
04 - -
035 - —
002 1
03 —
w w
@ 0015 - 1 @ 025 R
= 0
02 —
001 | 1
0.15 | —
0.1 (| —
0.005
0.05 - [J 1
S o b bl
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 o 100 200 300 400 500 600
epoch pattern
0.035 T T T T T T T T T 05 T T T T T
“training error (6x24x24x2 on A-both-1,2,3 rel.z) —— testing error (6x24x24x2{on A-both-1,2,3 rel.z) —+—
validation error (6x24x24x2 on A-both-1,2.3 rel.Z) ~------
045 - 4
0.03 - B
04 - -
0025 q 035 | 1
03 —
002 | 1
3 @ 02
b4 7] [1
0.015 | 1
02 —
001 *ﬂ}““ﬂ 0.5 - d
i WMu
01 —
0.005 B
005 J g
o L L L L L o 1. 4] " Lt n JI T o "
o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 o 200 400 600 800 1000 1200
epoch pattern

Figure

testing performance of the 6x24x24x2 network

5.2: The best network of experiment 1 (Initial Results) - training

72

and

tation. You can see from the testing errors, shown in figure 5.2, that there are
large error peaks with magnitudes much greater than any surrounding errors.
This indicates that the network is having severe trouble predicting the desired
outputs of a few select input patterns. Figure 5.3 displays the target yaw, the
network’s prediction, and the corresponding error peak on a small section of
testing data. There is a surge in error when the target yaw flips from 0 to 1
(representing an angular change from 0° to 360°). The problem arises because
the data originally gathered specifies the yaw of the upper arm relative to the
Z axis, with the origin at the shoulder. When the upper arm sweeps across
this axis the yaw jumps from 0° to 360° (or visa versa). The network performs
“interpolation” and guesses values in between the two, resulting in a wildly

wrong prediction.

1 yaw (A-rand.

1
j j a j predicted yaw (6x24%4x2 on AfARGAE Z)

09 g

08 08

07
06 R 06 |
05
04 g 04|
03 f
02 f R 02|
01f

i Bt

0
600 650 700 750 800 600 650 700 750 800

(a) Target yaw (b) Predicted yaw

testing error (6x24x24x2 on A-rand-1 rel.Z) ——

0 L L L
600 650 700 750 800

(c) Error

Figure 5.3: Desired yaw and the network’s prediction.

73

5.3.1 Arm Data Translation

The solution to this problem requires a translation of the arm data so that the
yaw is relative to an axis for which an instant change from 0° to 360° is not
possible. Figure 5.4 shows the change in specification of upper arm rotation.
The origin is now at the center of the torso and instead of measuring the yaw

from the Z axis it is measured from the X axis.

(b) New pitch

(¢) Original yaw (d) New yaw
Figure 5.4: Change in upper arm rotation specification.

It is extremely difficult if not impossible for the user to move their right upper

arm over the X axis. It would mean performing a very unnatural movement,

74

and one that is rarely used for everyday tasks. The movement required is
shown in figure 5.5 compared to the movement that was required using the

original specification.

Forwards

(a) Original specification of yaw

Forwards

(b) New specification of yaw
Figure 5.5: Movement required to create jumps in yaw between 0 and 1.

Figures 5.6 shows the yaw of the original specification and the yaw of the
translated specification. The translation has the effect of bringing the yaw
away from the limits of its range and move it towards the middle. This prevents
its value suddenly jumping from the largest possible to the smallest possible

and should make it easier for the networks to learn the data.

5.4 Re-training

All arm data was transformed so that yaw is relative to the X axis and the
origin is in the center of the torso (now the same as the measurement described
in section 2.5.1). The larger 2-layer networks were re-trained to determine
whether the transformation was beneficial. The results of re-training are given

in table 5.4. For a visual comparison, the results of re-training the 6x24x24x2

75

1

=

T T T T T T T T T T T T
‘old-rgl_shoulder/steph/fteph.rand1.test +— “steph/steph.randL.test.back" using 7 ——

09
0.8
07

06

05
04 g 04
03 1
02 R 02

01

0

L L L L L L 0 L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800

(a) Original yaw (b) New yaw
Figure 5.6: Example of yaw data from the Random task.

network are shown in figure 5.7'. Note that the units have changed. The
training and validation performance of the network is now measured in Root-
Mean-Squared error (RMS) as opposed to Mean-Squared-Error (MSE). This
is because there is a substantial reduction in error (by a factor of 1073) and

RMS error gives more practical units for display.

Network || Lowest validation error (RMS)
Random | Rotation | Both
6x8x8x2 0.010 0.006 0.010
6x12x12x2 || 0.010 0.006 0.009
6x16x16x2 | 0.009 0.006 0.009
6x20x20x2 | 0.009 0.006 0.008
6x24x24x2 | 0.008 0.006 0.008

Table 5.4: Re-trained network errors for experiment 1.

The smooth training curves indicate that there has been a substantial change
in the nature of the task. The network is no longer fluctuating between a high
and low error but exhibits a smooth decrease in error, to a value lower than

previously encountered. The testing graphs also show a large decrease in error.

The performance of the network on (un-randomised) data from participant A

performing the random task (figure 5.8) shows the network’s outputs are closer

LThe training results file for A-both-1,2,3 (“Both”) became corrupted, hence the end of
the training graph is missing. This did not effect the results in any way.

76

Random

0.055 T T T T T T T T 0.0007 T T T T
training error (6x24x24x2 on A-rand-1,2,3 rel. testing error (6x24x24x2 on A-rand-1,2,3 rel X) ——
validation error (6x24x24x2 on A-rand-1,2,3 rel.
005 - 1
0.0006 g
0045 1
0.04 |- 4 0.0005 4
0035 1
0.0004
0 w
z omp 1 @
0.0003
0.0002
0.0001
0.005 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epoch pattern
0.04 T T T T T T T T T 0.0006 T T T T T
training error (6x24x24x2 on A-rot-1,2,3 rel X)) —— testing error (6x24x24x2 on A-rot-1,2,3 rel X) ——
validation error (6x24x24x2 on A-rot-1,2,3 rel.X)
0035 1
0.0005 —
0.03 - B
0.0004
0.025 | B
0 w
H @ 0.0003
0.02 | B
0.0002
0015 | 1
1 0.0001
0.005 n n n n n 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epoch pattern
0.045 T T T T T T 0.003 T T T T
training error (6x24x24x2 on A-both-1,2,3 rel.X) —— testing error (6x24x24x2 on A-both-1,2,3 el X) —+—
validation error (6x24x24x2 on A-both-1,2,3 rel.X)
004 1
0.0025 —
0.035 B
0.03 | B 0.002 |- —
0025 1
0 w
H | @ 00015 - g
0.02 !
0.015 B 0.001
001]
0.0005
0005 1
0 L L L L L L 0 s TP % G i IR
0 1000 2000 3000 4000 5000 6000 7000 0 200 400 600 800 1000 1200
epoch pattern

Figure 5.7: Results of re-training 6x24x24x2 network.

7

to the targets than with the original yaw specification and that the network
no longer has difficulty with the prediction. Since the network was trained on
the same data this accuracy is expected. But it does show that the network is
fully capable of learning the task. The remaining experiments will determine

if the network can generalise.

The results indicate a decrease in error as the network size increases. How-
ever, the degree of accuracy of the error measurements is such that a clear
conclusion as to which 2-layer structure performs best can not be reached. To
decrease the time required to complete testing, only the 6x8x8x2, 6x16x16x2,
and 6x24x24x2 networks will be explored. These structures cover a suitably

large range of complexity.

78

1 T T T T T T

targ'et pitch (A»r'and»l rel.X) ——
predicted pitch (6x24x24x2 on A-rand-1 rel.X) -------

0.95 | B

pitch

07 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
pattern
(a) Pitch
1 T T T T T T T T
target yaw (A-rand-1 rel.X) ——
predicted yaw (6x24x24x2 on A-rand-1 rel.X) -------
0.8 ,

yaw

0 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
pattern

(b) Yaw

Figure 5.8: Performance of re-trained 6x24x24x2 net on A-rand-1 data.

79

Chapter 6

Experiment 2 - Exploration of

Best network Structures

This is a full exploration of the most promising network structures identified

in experiment 1.

6.1 Aim

This experiment aims to determine whether user-specific networks perform
better than user-independent networks, and similarly, whether task-specific
networks perform better than task-independent networks. The experiment will

identify the best network structure to pursue for final testing in experiment 3.

6.2 Description

Experiment 1 determined that three 2-layer structures will be explored further.
These are tabulated in table 6.1.

As with the first experiment, all data was gathered from session 1. The train-
ing, validation, and testing data sets are tabulated in table 6.2. Data from
the third run of each task is not used in the training process but instead will

be used for testing only. A user-independent set consisting of data from all 6

80

‘ # Nodes in layer 1 ‘ # Nodes in layer 2

8 8
16 16
24 24

Table 6.1: Network structures for experiment 2.

subjects is created by joining the data from all users. This is cut down to the
average size of the other data sets to allow accurate comparison of user-specific

and user-independent networks.

Task Data set (from Training | Validation | Testing
participants A to F)
Random ?-rand-1,2 90% 10% —
?-rand-3 — — 100%
Rotation ?-rot-1,2 90% 10% —
?-rot-3 — — 100%
Both ?-both-1,2 90% 10% —
?-both-3 — — 100%

Table 6.2: Data used in experiment 2.

6.3 User-Specific vs User-Independent

It is expected that user-specific networks will perform best when tested on
their corresponding user and worst when tested on a different user. A user-
independent network will have a performance somewhere between the two.
This hypothesis is based on the relative amount of information about the
participant provided during training, i.e whether examples of data from the

participant was presented to the network during training.

Only data from the rotation task is used in this part of experiment 1. For each
of the structures that will be explored (table 6.1) 6 networks are each trained
on data from a different participant, and 1 is trained on an equal sized set
containing data from all participants. This gives 6 user-specific networks and

1 user-independent network for each structure.

81

Some illustrative results of the 6x8x8x2 network are shown in table 6.3. These
results are echoed with all structures, see appendix C, section C.2.1. The
table gives the positional error (defined in section 4.1.3) of each user-specific
network on data from their corresponding participant. It also shows the mean
positional error of both the user-specific and user-independent network tested

on data from the other participants.

Trained on | Positional error on same | Mean positional error on
participant participant (meters) other participant (meters)

A 0.034537 0.054452

B 0.008828 0.070014

C 0.014978 0.046059

D 0.020558 0.055799

E 0.019062 0.114728

F 0.008482 0.051637

All — 0.035152

Table 6.3: Performance of 6x8x8x2 ANN.

As expected, networks trained on user-specific data perform best when tested
on their associated user and worst when tested on a different user. The average
error of a user-specific network tested on data from its corresponding partici-
pant is just 1.7 centimeters. Tested on a different participant it is more than
3 times greater, with a value of 6.5 centimeters. User-independent networks,
that have been trained on data from all users, have a performance in between

the two, with an error of 3.5 centimeters.

As an example, figure 6.1 shows the results of testing a user-specific network on
data from its corresponding participant (in this case, participant B). Graphs a
and b show plots of the target output against the actual output for pitch and
yaw. Figure 6.2 shows a plot of the positional (real) error. The user-specific
network predicts yaw and pitch well. Its positional error ranges from 0 to 6

centimeters although it remains at the lower end most of the time.

In comparison, figure 6.3 shows the pitch and yaw prediction of a user-independent,
network tested on data from the same participant. The user-independent net-
work is not as accurate, there is more deviation from the targets that is par-

ticularly noticeable in the predictions of pitch as its value oscillates (at the

82

0.92 T T T T - T
target pitch (B-rot-3) ———
predicted pitch (6x8x8x2 trained on B-rot-1,2 tested on B-rot-3) -------
09 ,
0.88 ‘. ke g
0.86 | '\y i
) f | A
< \ y) " W | \. 2 b
S 084\ B v 1 | | .
o [
o8t i || SRR i | .
0.78 | [o g
0.76 . L L L
0 200 400 600 800 1000 1200
pattern
(a) Pitch
0.7 T T T T T
target yaw (B-rot-3) ———
/predicted pitch (6x8x8x2 trained on B-rot-1,2 tested on B-rot-3) -------
0.65 |] /]
n " ; A \
0.6 [f\/ iy AN A : . B
\ k Hv"y
0.55 | i
2 -
>
05 | B
0.45 B
04 | B
035 1 1 1 1 1
0 200 400 600 800 1000 1200
pattern
(b) Yaw

Figure 6.1: Pitch and yaw prediction of 6x8x8x2 user-specific network on B-
rot-3.

83

0.06

Positional Error with K (6x8x8x2 trained on B-rét-l,z tested on é-rot»s) e

0.05 | B

0.04 B

real

0.03 B

0.02

LR VA A

0 200 400 600 800 1000 1200
pattern

Figure 6.2: Positional error of 6x8x8x2 user-specific network on B-rot-3.

peaks and troughs). Figure 6.4 shows the positional error to be worse by 2

centimeters, with the error in elbow position ranging from 0 to 8 centimeters.

It is safe to conclude that a user-specific network will perform better than
a user-independent one if tested on its corresponding user. But if there is a
requirement for multiple users then a user-independent network will perform

better on average than a user-specific one.

6.4 Task-Specific vs Task-Independent

Now we consider the performance of task-specific networks compared to that
of task-independent ones. It is hypothesised that task-specific networks will
perform better on the task than the task-independent networks. As with user-
specific networks this is because of the relative amounts of information provided
to the network during training. By its very definition, a network specific
to a particular task will have been presented with more of the required arm

movements during training than a task-independent one.

The 3 structures will be trained on user-independent data from either the

random task or the rotation task (so either set all-rand-1,2 or all-rot-1,2). For

84

target pitch (B-rot-3)

,
1

|

|

|

i
—~
R
&
o
o0
c
S
°
9]
2
7]
2
21
=]
°
T
®
c
S
°
@ -
=
[
=
N
X
&
%
&
X
e
=
S
=
s
°
5}
2
Q
5
<
s

0.76 |

yoxd

0.74

600 800 1000 1200
pattern

400

200

, .H&
| —
! S—
! -
! s
i ===
~ =i
o™ =
U B
[=R<] -
Lo b = 4
=T %
=]
©
So
=3
[OR7 -
oQ -
So - -
bu] -
L Ge= 4
T
©
c —
o
°
2 <
£ =
I e
s ==
+ o 2
=1 2 ~
= g
2 =
o =
w® = =
= S —
>
°
54 =
FL o
=] —
D —-
<4
S
I I | Cem I I
~ 1o} © 1) 0) < 0
o © [S) L [S) < IS «
S o <] <]
mek

600 800 1000 1200
pattern

400

200

(b) Yaw

Figure 6.3: Pitch and yaw prediction of 6x8x8x2 user-independent network on

B-rot-3.

85

0.08 T T T T T
Positional Error with IK (6x8x8x2 trained on all-rot-1,2 tested on B-rot-3) ———

0.07]

0.05 | B

real
o
o
B
T
Il

0.03 H B

0.02

L AL ARG 01D

0 200 400 600 800 1000 1200
pattern

T
I

(a) Positional error

Figure 6.4: Positional error of 6x8x8x2 user-independent network on B-rot-3.

an added comparison, the networks will also be trained on sets of an equal
size containing data from both tasks (i.e. all-both-1,2). The results from the
6x8x8x2 network are tabulated in table 6.4, which shows the mean positional
error of the networks on the random and rotation tasks. Full results are given

in appendix C, section C.2.2.

Trained Mean positional error Mean positional error
on task | on random task (meters) | on rotation task (meters)
Random 0.039020 0.068617
Rotation 0.066172 0.035152

Both 0.041548 0.034755

Table 6.4: Mean positional errors of 6x8x8x2 network.

The results validate the conclusion that a task-specific network will perform
better on a specific task than a task-independent network. On the rotation
task, the mean error of the task-specific network is half that of the task-

independent network, at 3.9 centimeters rather than 6.9 centimeters. A net-

86

work trained on both random arm movements and data from a specific task
has a performance between the two. Again, this is due to the amount of data

present in the testing set that is similar to data in the testing set.

Another important point to note is that the task-independent network is better
at predicting the movements of the rotation task than the task-specific one is
at predicting random arm movements. The task-independent network can
generalise better because data from the random task covers a much greater

range of movement than data from the rotation task.

Figure 6.5 shows the predictions of pitch and yaw of the 6x8x8x2 task-specific
network on data from participant B performing the rotation task. The per-
formance is good. The paths of pitch and yaw are followed well, although it
does have some difficulty when the pitch changes rapidly. Figure 6.6 shows the

positional error, which peaks at 8 centimeters.

Figures 6.7 and 6.8 show the performance of the 6x8x8x2 task-independent
network tested on the same data. In comparison, the task-independent network
performs much worse. It has particular difficulty predicting pitch. The general
shape of the movement is followed, but the range in the predicted values is
simply too small. The error in predicting pitch is the main reason that the

positional error is bad.

The difference in performance of the different network structure is marginal,
so it seems that the complexity of the 2-layer networks does not effect their
performance a great deal. It is reasonable to select the 6x8x8x2 network for
further testing. This is the same structure determined by Beeharee [3]| to have

good performance on similar tasks.

87

target pitch (B-rot-3)

0.92

0.78 |

0.76 |

0.74

600 800 1000 1200
pattern

400

200

(a) Pitch

“"task/6x8x8x2/toGraphDone/netout.10000.all.cut.rotland2.back.andyg.rot3" using 1:2

"task/6x8x8x2/toGraphpone/netout.10000.all.cut.rotland2.back.andyg.rot3" using 1:4 -------

0.7

0.65 |

0.45 |

0.4

0.35

600 800 1000 1200
pattern

400

200

(b) Yaw

Figure 6.5: Performance of 6x8x8x2 task-specific network on B-rot-3.

88

0.08

" Positional Error with IK (6x8x8x'2 trained on aII-ro't-l,Z tested on B'-rot»s) e

0.07 E
0.06 |]

0.05]

real

0.04 B

0.03 H B

0.02 H 4

0 200 400 600 800 1000 1200
pattern

(a) Positional error

Figure 6.6: Positional error of 6x8x8x2 task-specific network on B-rot-3.

89

target pitch (B-rot-3)

predicted pitch (6x8x8x2 trained on all-rand-1,2 tested on B-rot-3) -------

0.96

0.94 |

0.84
0.82 |
0.8 |-
0.78 |

0.76

600 800 1000 1200
pattern

400

200

_3) e

o = -
P . =
[=R<] =
- o =
c =TT
20 o= 7
Tg T
= e
-8 T =
o7 e
DY -
22 -
Sa .
3 I
F e vV V—
IS R
s =

(a) Pitch

predicetd pitch (6x8x8x2 trained on all

0.7
0.65 |

mek

05 |

0.45 |

04 -

0.35

600 800 1000 1200
pattern

400

200

(b) Yaw

Figure 6.7: Pitch and yaw prediction of 6x8x8x2 task-independent network on

B-rot-3.

90

0.25

Positional Error with IK (6x8x8x2 trained on aII-ran'd-l,Z tested on B'-rot»s) e
02
0.15
E
01 .
0.05
0 1 Il L 1 If\\
0 200 400 600 800 1000 1200
pattern
(a) Positional error
Figure 6.8: Positional error of 6x8x8x2 task-independent network on B-rot-3.

91

Chapter 7

Experiment 3 - Testing

(zeneralisation

This experiment tests the best network structure identified in experiment 2 on

its generalisation to new users and new tasks.

7.1 Aim

This experiment aims to determine how well the network generalises to new
users. It will also determine the ability of the network to generalise to changes
in the task. The error caused by re-attaching the sensors can also be deter-

mined.

7.2 Description

Different applications have different requirements. A highly specialised task
may only have a limited number of users capable of performing them, in which
case it is plausible to train user-specific, task-specific networks. Other tasks
may be more general, and designed for use by any person. In this case it may
be better to train a user-independent, task-independent network. To explore

the performance on a range of possible applications I will explore 3 scenarios:

92

1. The user has trained a user-specific network.
2. The user contributed in training a user-independent network.

3. The user has never used the system before (so they must use a user-

independent network).

Each scenario has 2 parts. Part a tests a task-specific network, and part b
tests a task-independent network. Only the 6x8x8x2 network, identified in

experiment 2, is tested.

In all scenarios the network is trained on data gathered in the initial session
(session 1). To determine the error introduced by re-attaching the sensor
and re-measuring the offsets, the network is tested on data gathered in a
different session (session 2). The sensors were re-attached and the offsets
were re-measured, exactly as they would when a user is first set up to use the
system. The error introduced by doing so can be determined by comparing
the performance of the network on data from session 1 with its performance
on data from session 2. Table 7.1 shows the data used for training. The data

used for testing is given in table 7.2.

Scenario Task Data Set (from original || Training | Validation
participants A-F)
la Rotation ?-rot-1,2 90% 10%
1b Random ?-rand-1,2 90% 10%
2a, Rotation all-rot-1,2 90% 10%
2b Random all-rand-1,2 90% 10%
3a Rotation all-rot-1,2 90% 10%
3b Random all-rand-1,2 90% 10%

Table 7.1: Training data in experiment 3.

7.3 Results

The performance of a 6x8x8x2 network in the scenarios is tabulated in table
7.3.

93

Scenario Task Data Set Testing
From original From new
participants A-F | participants G-N

la Rotation ?-rot-4 — 100%
?-highrot-4 — 100%

1b Random ?-rot-4 — 100%
?-highrot-4 — 100%

2a, Rotation 7-rot-4 — 100%
?-highrot-4 — 100%

2b Random ?-rot-4 — 100%
?-highrot-4 — 100%

3a Rotation — ?-rot-1 100%
— ?-highrot-1 100%

3b Random — ?-rot-1 100%
— ?-highrot-1 100%

Table 7.2: Testing data in experiment 3.

An increase in error of just under 1 centimeter is observed in most cases when
the network is tested on data gathered in session 2. This can be mainly at-
tributed to errors in the measurement of the sensor offsets. The users’ dimen-
sions remain the same as they are simply read back from a file in which the

original measurements were stored.

For all scenarios the task-specific network (in part a) produces a lower error
than the task-independent one (in part b), confirming the results of experiment
2. The best performance is seen in scenario 1a, where the network is both task-
specific and user-specific. For the other task-specific scenarios the error ranges

from 4.26 to 6.32 centimeters.

Comparing part b of all scenarios reveals that when the network is task-
independent, whether it is user-independent or not makes little difference to
its performance. The use of a task-independent scenario increases the errors,

but also brings them closer to one another, to just under 8 centimeters.

The similarity in error of the task-independent networks reflects on their gen-
eralisation ability. In session 2, the difference in error of task-independent
networks between the rotation task and the high-rotation task is in the range

of only 0.06 to 0.72 centimeters. In comparison, for task-specific networks the

94

g6

"SOLIRUIIS ¢ 9} 10] doueurIofdd gXgXgXg :¢°), 9[qe],

Scenario Same session Different session
Mean positional error on || Mean positional error on | Mean positional error on
rotation task (meters) rotation task (meters) | high-rotation task (meters)
la 0.017741 0.013978 0.051728
1b 0.068102 0.078419 0.077779
2a 0.035152 0.042601 0.059812
2b 0.068617 0.076433 0.070736
3a — 0.055065 0.063245
3b — 0.075304 0.082517

range is between 0.81 and 3.7 centimeters. This confirms that task-independent

networks are better at generalising to new tasks than task-specific ones.

Interestingly, the comparative performance on new users shows a similar trend.
In session 2, the change in error of a task-independent network between an
existing participant and a new participant ranges from -0.11 to 1.46 centimeters
(note that for the rotation task, the error on a new participant is marginally
better than that on an original participant, with a decrease in error of 0.11
centimeters). The task-specific networks have a change in error that is in the
region of 0.34 to 4.11 centimeters. This indicates that the task-independent
network is also better at generalising to new users, perhaps because of the

greater range of motion provided by the random task.

Despite the better generalisation ability of the task-independent networks,
their performance remains consistently worse than the task-specific networks.
The similarity of the high-rotation task to the rotation task means that the
task-specific networks can still perform it with a reasonable degree of accuracy

(in the range of 5.17 to 6.32 centimeters).

It is assumed that scenarios 3 is the most relevant to the majority of virtual
reality applications. It is rare to find a system that can only be used by a
handful of people. The best performance from the networks trained for scenario
3 is seen when the system is used by participant H. Figure 7.1 shows the
results of the network from scenario 3a (user-independent and task-specific) at
predicting the pitch and yaw of participant H’s upper arm when performing the
rotation task for the first time. You can see from graphs a and b that pitch and
yaw is predicted well by the network, with deviations of at most 0.03 (or 10°).
Figure 7.2 shows the corresponding positional (real) error of the network!. The
maximum positional error is 1 centimeter, but this is not representative of the
majority of the predictions. The changes in error between each pattern (i.e.

between each time step) are small, leading to smooth movement.

Figure 7.3 shows the predictions of pitch and yaw of the network from scenario

3b (user-independent and task-independent) when tested on the same set from

IPlease note that the error spike around pattern 350 is caused by an anomalous yaw
value in the testing set.

96

1
' ' ' target pitch (I-i-rot»l) —
predicted pitch (6x8x8x2 trained on all-rot-1,2 tested on H-rot-1) -------
0.6 | B
<
£ 05} |
Q.
04 B
03 |
0.2 -
0.1 -
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
pattern
(a) Pitch
0.9 T T T

target yaw (I-i-rot—l) _—
predicted yaw (6x8x8x2 trained on all-rot-1,2 tested on H-rot-1) -------

z
>
0.4 B
03 B
02 .
0.1 n
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
pattern
(b) Yaw

Figure 7.1: Pitch and yaw prediction of (6x8x8x2) network from scenario 3a

on H-rot-1.

97

0.4 T

Positional Error with IK (6x8x8xﬁ trained on aII-rdt-l,Z tested on H-rot»l) e

0.35 | B

03]

real
o
N
T
Il

0.15 | B
0.1 | B

0.05 |]

N ‘

| |
0 500 1000 1500 2000 2500 3000
pattern

Figure 7.2: Positional error of (6x8x8x2) network from scenario 3a on H-rot-1.

participant H?. As would be expected, the prediction of pitch and yaw is worse.
The predication of pitch in particular follows the peaks but not the troughs of
the path. This results in an increase in the positional error, shown in figure
7.4, the maximum of which is now 2.5 centimeters. Again, the error of most
of the prediction is lower than this, and the change in error at each time step

is such that the movement is smooth.

2 Again, the error peak at pattern 350 is caused by an anomalous yaw value in the testing
set.

98

1
' ' ' target pitch (I-i-rot»l) e
predicted pitch (6x8x8x2 trained on all-rand-1,2 tested on H-rot-1) -------
0.6 | B
<
£ 05} |
Q.
04 B
03 |
0.2 -
0.1 -
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
pattern
(a) Pitch
0.9 T T T

target yaw (I-i-rot—l) _—
predicted yaw (6x8x8x2 trained on all-rand-1,2 tested on H-rot-1) -------

z
>
0.4 B
03 B
02 .
0.1 n
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
pattern
(b) Yaw

Figure 7.3: Pitch and yaw prediction of (6x8x8x2) network from scenario 3b
on H-rot-1.

99

0.35

T T T T T
Positional Error with IK (6x8x8x2 trained on all-rand-1,2 tested on H-rot-1) ———

0.3 | B
0.25 | B

0.2 |- B

real

0.15 | B

0.1 5

0.05 | u

0 Il Il Il Il Il
0 500 1000 1500 2000 2500 3000

pattern

Figure 7.4: Positional error of (6x8x8x2) network from scenario 3b on H-rot-1.

100

Chapter 8

Conclusions

8.1 Discussion

This project has successfully explored the application of neural networks in
predicting elbow position. A variety of neural network structures were tested
on a range of users and tasks. The results of 3 experiments determined that a
neural network with 2 hidden layers has the potential to predict elbow position

with an average error of only 1.4 centimeters.

Experiment 1 determined that a network with only a single hidden layer can
not learn the complexity of human arm movement. The high dimensionality
of the data requires a network with some kind of hierarchical structure, such
as a network with 2 hidden layers. It is likely that the input space is encoded
by the first hidden layer to reduce its complexity before presentation to the

second layer.

A suitable representation of upper arm orientation proved to be very impor-
tant. The original specification could not be learnt successfully by any of the
neural network structures. This problem was solved with the introduction of

an altered specification.

Experiments 2 and 3 determined that a user-specific network performs bet-
ter than a user-independent network, but does not generalise as well to dif-
ferent users. Similarly, a task-specific network performs better than a task-

independent network but does not generalise as well to variations in the task.

101

Even so, the task-specific networks performed consistently better than the task-
independent ones. The nature of the task-independent networks’ inaccuracy
in predicting pitch indicated that data gathered from random arm movements
was not representative enough of the movements required by the structured
task. A possible solution is to train the task-independent network on data
gathered from a range of different tasks. The data would cover a wider range
of arm movement and hence be more suitable for training a task-independent

network.

The best performance can be achieved by a task-specific, user-specific network,
which has an average error of only 1.4 centimeters. However, the majority of
virtual reality applications have the requirement of multiple users. In this case,
each user would have to perform an example of the task before using the sys-
tem, so that a network could be trained specifically for them. This approach,
while producing very accurate arm movement, violates my requirement of a

system that is quick initialise and start using.

It is more likely that a system will want to allow multiple users. In this
case, data gathered from several users performing movements common to the
application would be used to train a network. The resulting task-specific, user-
independent network will perform with an average error of 4.2 centimeters if
the user contributed in the training data, and 5.5 centimeters if they didn’t.
The estimated tolerance range is +4 centimeters in the y-direction [3]. Given
that the positional errors in this project are a measurement of displacement
in any direction, the network should perform within the tolerance range most
of the time. The use of a task-independent, user-independent network will

produce errors of about 7 centimeters on average.

All of the resulting networks produce smooth movements that follow the path
of the user’s arm. Errors in the network’s predictions are gradual, and have the
effect of the arm not moving as much as it should, or moving too far. There

are no sudden jumps in its position.

The error introduced by the initial set-up of a user was to found to be roughly
1 centimeter. This is surprisingly good, showing that a calibration technique,

such as the one used by Beeharee [3], may not be necessary

102

8.2 Improvements

8.2.1 Yaw Specification

With the current specification of upper arm rotation, a sudden change in yaw
from 0° to 360° is difficult but not impossible (see section 5.3.1). It is desirable

to have a specification that is defined so this can never occur.

8.2.2 IK Correction

The IK correction algorithm (section 2.5.2) consistently reduces the error of
the neural network prediction by several centimeters. However, the use of
a more sophisticated technique, that perhaps takes into account past elbow

position, could reduce the error further.

8.3 Future Work

8.3.1 Neural Network

Movements from one moment in time are inherently related to previous move-
ments so the use of a system that takes into account past movement could
prove beneficial. One example of such a system is the recurrent network.
These are similar to MLPs, except information encoded in the network in one
time step is fed back as inputs for the next time step. The NeuroAnimator
system successfully uses recurrent networks to model the dynamics of physical
systems [12, 11]. Elman networks are another example [10] and have been

applied successfully in the field of natural language processing.

Modular networks [17, 13, 29| consist of a number of separate modules (each
of which is a small neural network) governed by a so-called “gating network”.
Different areas of the input space are allocated to different modules for predic-
tion. These types of network could prove particularly useful in predicting the

movement of several body parts at the same time.

103

8.3.2 Legs

The existing system animates a person’s upper body only. In most applica-
tions, movement of the legs is determined by a simple IK based algorithm, or
by following the oscillation of a spline. But for applications that require more
accuracy, it would be useful to extend the system to include neural networks

capable of modelling leg movements.

8.4 Summary

This project has shown that neural networks are a viable approach for mod-
elling human arm movement. They have the potential to predict arm move-
ment to within only a couple of centimetres. Future work is needed to extend

the approach to the whole body.

104

Appendix A

Calculations

A.1 User Measurements

Participant || Shoulder | Upper arm | Lower arm

width [, | length [, | length [;,
A (steph) 0.21 0.37 0.31
B (andyg) 0.225 0.34 0.26
C (andygo) 0.18 0.33 0.27
D (caz) 0.18 0.305 0.255
E (daniel) 0.18 0.29 0.265
F (helen) 0.17 0.29 0.24
G (ashwin) 0.185 0.34 0.275
H (barbara) 0.175 0.31 0.24
I (bertine) 0.175 0.33 0.26
J (dave) 0.1925 0.385 0.305
K (davel) 0.215 0.35 0.28
L (jonne) 0.20 0.375 0.30
M (kim) 0.1925 0.38 0.28
N (markku) || 0.2025 0.335 0.285

105

A.2 Avatar Scaling

The scaling factor s of a part is calculated by simply looking at the ratio of

the part’s desired length /¢ and the current length [¢,

ld

S:l_c

This scaling factor is used to define a scaling matrix [S],

S O O W»
S »w O O
- o O O

Scaling is achieved by multiplying the part’s position matrix [P] by this scaling
matrix,

[Pscaled] — [P] [S]

It was decided to implement scaling in this manner because it does not require
any modification of MAVERIK code (stated in section 2.4 as a desired feature
of my code)!. Because the parts are relative to one another, parts further up
the hierarchy scale with those below. To prevent this, and to allow a part
to define its own scaling factor, the position matrices of parts higher up the
hierarchy must undo the effects of the scaling of previous parts. This is done by
simply applying the inverse of the previous parts scale matrix before applying
the part’s own. Scaling of the shoulders is achieved by scaling the hip part
by the shoulder’s scaling factor. This results in a scaling of the whole body.
The arm parts undo this scaling and apply their own scaling factor to achieve

accurate arm lengths. The scaling process is shown in figure 1.

Tt should also be noted that the position matrices are not being changed in any other way,
and should not be. A change in the positional components would result in parts detaching
- as well as being physically inaccurate it would also probably be relatively disturbing!

106

Upper Arm
[Pua]l = [Pua]-[SS]il-[Sua]

Lower Arm
[Pla]l = [Ha]'[sua]_l'[sla]
Hips
[Pn]” = [Pa]-[S]

Figure 1: Avatar scaling.

A.3 Tracking Details

A.3.1 Initialisation

The user is asked to sit upright when the sensors are initialised so that a
transformation can be calculated to correct the orientation of the torso sensor.
The torso sensor is not mounted vertically upright on the users chest, but on
a slope. The continuous application of this transformation during tracking
ensures that the avatar is upright when the user is, even though the torso
sensor is not. It only corrects for orientation and not position, so it is still
important that the sensor is mounted in the center of the users chest. This
translation step is unnecessary for the other sensors as their orientations are

already aligned with the body part they are tracking.

Define a translation [7'] that maps from an upright orientation [U] to the torso

sensor’s initial orientation [/] as,
7] = [U]~'{1]
where the positional components of [U] and [I] are all zero.

The translation required to correct the torso sensor orientation, [C], is simply

the inverse of this,

107

The application of [C] effectively rotates the torso sensor by the difference
between the initial orientation [I] and the upright orientation [U], as shown in
figure 2.

Torso

Figure 2: Torso correction.

A.3.2 Tracking

Figure 3 shows the steps necessary to offset the sensors to the positions they
represent. The offsetting of all sensors but the upper arm sensor is done in
avatar co-ordinate system. The application of such a translation to the upper
arm sensor is unnecessary as we are only interested in its position and never
require its orientation. Fach sensor has an associated translation that maps

from sensor co-ordinates to avatar co-ordinates.
These steps are illustrated using the torso sensor as an example.

Step 1: The sensors are read to determine their positions and orientations in
world co-ordinates. For each sensor this gives a matrix [M?] from which you
can determine? the position, specified by 3 co-ordinates z*, y*, and 2*, and the
orientation, specified by the 3 axes X*, Y*, and Z°.

Step 2: For each sensor a matrix [A] is defined to translate from sensor to

avatar co-ordinates. The translation swaps the axes of the sensor so that they

2MAVERIK provides functions for querying and manipulating matrices and vectors [15].

108

2. Transoform co-ordinate systems

Figure 3: Offset calculations.

109

3. Offset positidns

represent the axes of the corresponding avatar part. The sensor’s matrix is

multiplied with [A] to achieve the desired translation,
[M?] = [M°][A]

For example, for the torso sensor the desired axes changes are,

Xp = X;
Yo = -2
Z=¥;
So [Ay] is defined as,
1 0 00
0 0 1 0
Al =
Ad=10 2100
0 0 01

This is applied to produce the torso sensor’s matrix in avatar co-ordinates®,
[M7] = [M7][Ad]

Step 3: The position of the sensors are offset so that their positions line up

with the user’s bones. Generally, the desired effect is,
2’ =z%+ oz
Y =y" +oy
2°=2"4o0z

where z%, y*, and 2* are the position components of [M*?], and oz, oy, and oz

are the offsets in the X?, Y* and Z° directions respectively.

3 Actually, the torso sensor also has the correction of its orientation applied, so the full
calculation is [M{] = [Mf].[C].[A]. This only applies to the torso sensor and so it is not
illustrated in the main text for the sake of clarity.

110

A matrix [O] is defined to perform this offsetting,

1 0 0 ox
01 0 oy
0] =
0 01 oz
000 1
with which [M]* is multiplied,
[M?] = [M°][O]

For example, for the torso, 0z; is negative and there is no offset along the

X-axis,
7y =
Y{ = yi + oy
2] =z + o0z
so [Oy] is,
100 O
01 0 oy
(01] = t
0 01 oz
000 1

This is applied to produce the final offset torso sensor matrix,
[M7] = [M{][O]

The result of this process gives us a final matrix [M°] corresponding to each
of the sensors, from which the positions and orientations of the user’s body
parts can be determined to calculate a model of the upper body, described in
section 2.4.3.

A.4 Determining Lower Arm Roll

First, the vector FH is used to calculate the y-axis of the lower arm,

111

EH
Y, =i
|[EH|

Next, the normal between the z-axis of the hand and the y-axis of the upper

arm gives us the x-axis of the upper arm,
Xo=7pxY,

Finally, the cross product between the x-axis and y-axis of the lower arm gives

us its z-axis,

Zo=Xag XY,

Figure 4: Determining lower arm roll.

112

Appendix B

Backpropagation

Before training begins the weights of the neural network are initialised to small

random values (between —0.5 and 0.5).

Training consists of a forward and a backward pass through the network. The
forward pass propagates a pattern (77, ?) through the network and calculates
the output o, of every node u in the MLP.

The backward pass propagates the error backwards through the network. The

error 0, for each output unit & is,

(519 — Ok(l - Ok)(tk — Ok) (1)

where ¢, is the target of node k£ and oy is its actual output.

The error for each hidden unit A is,

5h — Oh(l — Oh) Z wkhék

kEouput

where wyy, is the weight between node h and node k.

The error is used to adjust each weight w;; in the network by adjusting them

by an proportional amount,
Wi; £ Wyj + Awﬂ(n)

113

where
Awﬂ(n) = néjxji + Oziji(n — 1)

where Awj;(n) is the weight update in the nth epoch of training, z;; in the

input from node 7 into node j.

This occurs for all of the patterns in the training set, for every epoch of training.
The process repeats until some stopping criteria has been met, such as the when
the maximum number of epochs has been reached, or the validation error is

low enough (see section 3.3.1).

114

Appendix C

Full Results

C.1 Experiment 1

C.1.1 Initial Results

Experiment 1 Summary

Network Lowest validation error (MSE)
A-rand-1-2-3 | A-rot-1-2-3 | A-both-1-2-3

6x8x2 0.015 0.010 0.013
6x16x2 0.010 0.012 0.012
6x24x2 0.007 0.013 0.010
6x32x2 0.009 0.012 0.010
6x4x4x2 0.015 0.012 0.014
6x8x8x2 0.009 0.010 0.010
6x12x12x2 0.006 0.010 0.009
6x16x16x2 0.007 0.009 0.009
6x20x20x2 0.007 0.009 0.009
6x24x24x2 0.005 0.002 0.008

115

Example

of 6x16x0x2 Training and Testing

0.05 06
! ! ! " training error (6x16x0x2 on A-rand-1.2,3 rel.2) —— ! ! testing error (6x16x0x2 on A-rand-1,2,3 rel.2) ——
validation error (6x16x0x2 on A-rand-1,:
0.045]
05 B
0.04 ~q
0.035 ~q 04 B
0.03 1
w w
2 g o3r 1
0.025 1
002 ! 02| 4
0015
01 1
0.01
0,005 , , n - o kb cad Tl i1 ik *{{ "
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600
epoch pattern
0035 T T T T T T T 1 T T T ; T
raining error (5x16x0x2 on A-rot-1.2,3 rel.2) —— testing error (6x16x0x2 on Aqrot-1,2.3 rel.2) ——
validation error (6x16x0x2 A-rot-1,:
09 - 1
0.03 | ~q
08 - 1
07 1
0.025 ~q
06 - 1
w w
& oof 1 @ osr 1
04| 4
0015 fr 1
03 1
02 1
001 | 1
01f I [g
0,005 0 Wnhonmet i L oLl] bl I L |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600
epoch pattern
0.04 T T T T T T T 05 T T T ; T
training error (6x16x0x2 on A-both- testing erfor (6x16x0x2 on A-both-1,2,3 rel.2) ——
validation error (6x16x0x2 on A-both-:
0.5 - 1
0.035 1
0.4 4
003 |- 1 0.35 - 1
03 1
0.025 ~q
u @
= 12
0.02 ~q
0015 1
0.005 w3 ’
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 200 400 600 800 1000 1200
epoch pattern

116

Example of 6x4x4x2 Training and Testing

0.06 07
! ! ! " training error (6xax4x2 on A-rand-1.2,3 rel.2) —— ! ! testing error (6x4x4x2 on A-rand-1,2,3 rel.Z) ——
validation error (6x4x4x2 on A-rand-1,:
0,055 - 4
06 - 1
005 | 4
0,045 - 1 05 -]
004 | 4
0.4 4
w w
8 L 1
8 oo 4
03 B
003 4
0.025 4 02]
01 1
o . I L] sl
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600
epoch pattern
005 - T T T T T T 0.5 - T T T T
training error (6xdxdx on Aror-1.2,3 rel.2) —— teSting error (6xdxdx2 on Afot-1,2.3 rel.2) ——
validation error (6x4x4x2 on A-rot-1,;
0.045 R 04 4
0.04 ~q 0.35 - B
0.035 ~q 03 B
003 | 4 025 - 1
8 4
= 12
0.025 - 4 02 1
0.02 ~q 0.15 - B
o015 b 4 01t 1
001 - 1 005 - 1
o0 —— oo I] |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 100 200 300 400 500 600
epoch pattern
005 T T T T T T T 07 T T T y T
training error (Bxdx4x2 on A-both-1.2,3 rel.2) —— testing error (6xéxdx2 on A-both-1,2.3 rel.2) ——
validation error (6x4x4x2 on A-both-:
0,045 - 1
06 - 1
004 |- B
05 B
0.035 ~q
003 1 o4 r 1
" 3
= 12
0.025 - 4 osl |
02 1
01l 1
0,008 o I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 200 400 600 800 1000 1200
epoch pattern

117

Example of 6x24x24x2 Training and Testing

0.04 05
! ! ! " training error (6x24x24x2 on A-rand-1.2,3 rel.. j j testing error (6x24x24x2 on A-rand-1,2,3 rel.Z) ——
validation error (6x24x24x2 on A-rand-1,2,3 re
045 - 1
0.035 ~q
0.4 4
0.03 ~q
035 - 1
0.025 1
03l 1
w w
8 oo 4 @ ozst 1
| 02 1
015 - 1
{ R v 01 i
0.005 -M% ww‘ ; 0.05 |- 7
o a4
T T s il . " R i
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600
epoch pattern
0.03 T T T T y ; T T 05 T T T T T
training error (6x24x24x2 on ATol-1.2,3 1el.2) —— testing error (6x24x24x2 on A-steph-ot .2) ——
validation error (6x24x24x2 on A-rot-1,2,3 rel.Z)
0.5 - 1
0.025 ~q
0.4 4
035 - 1
0.02 ~q
03l 1
w w
8 oost- 4 # oost 1
02 1
0.01 | ~q
0.5 |- 1
0.1 (| |
0,005
0.05 [1
. : . .) . IR ey 0 1ol g il I i Lol]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600
epoch pattern
0,035 - T T T T y T T T 05 - T T ; T
“training error (6x24x24x2 on A-both-12.3 rel2) —— esting error (6x24x24x2Jon A-both-1,2,3 rel2) —+—
validation error (6x24x24x2 on A-both-1,2,3 rel.Z)
0.5 - 1
003 | 4
0.4 4
0.025 1 0.35 |- 4
03l 1
0.02 ~q
w w
8 @ ozst 1
0.015
02 1
001 015 - 1
01 |
0,005
0.05 - 1
o X X X X X X X X X o 1. g " J it 4 J] . "
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 200 400 600 800 1000 1200
epoch pattern

118

Example of 6x24x24x2 Pitch and Yaw Prediction

target pitch (A-rand-1 rel.Z)

icted pitch (6x24x24x2 on A-rand-1rel.Z) -------

0.75 |

600 800 1000 1200 1400 1600 1800
pattern

400

200

) Joe--

rang 4
randil rel.Z

Jaw (A
on A

g prédicted yaw (6x24:

mek

400 600 800 1000 1200 1400 1600 1800
pattern

200

119

C.1.2 Re-training

Experiment 1 Re-training Summary

Network Lowest validation error (RMS)
A-rand-1-2-3 | A-rot-1-2-3 | A-both-1-2-3
6x8x8x2 0.010 0.006 0.010
6x12x12x2 0.010 0.006 0.009
6x16x16x2 0.009 0.006 0.009
6x20x20x2 0.009 0.006 0.008
6x24x24x2 0.008 0.006 0.008

120

Example

of 6x24x24x2 Training and Testing

Random

0.055 T T T T T T T T T 0.0007
training error (6x24x24x2 on A-rand-1,2,3 rel.X) ——
validation error (6x24x24x2 on A-rand-1,2,3 rel.X;
0.05 - 4
0.0006
0.045 - 4
0.04 - 4 0.0005
0.035 - 4
0.0004
2 w
z 003p q a

0.0003

0.0002

0.0001

0 1000 2000

3000

4000 5000 6000 7000 8000 9000
epoch

10000

testing error (6x24x24x2 on A-rand-1,2,3 rel X) ——

pattern

Rotation

0.04 T T T T T T T 0.0006 T T T T T
training error (6x24x24x2 on A-fot- testing error (6x24x24x2 on A-rot-1,2,3 rel X) ——
validation error (6x24x24x2 on A-rot-1,2,
0035 1
0.0005 —
0.03 - B
0.0004
0.025 | B
0 w
H @ 0.0003
0.02 | B
0.0002
0015 | 1
1 0.0001
0.005 n n n n n 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epoch pattern
0045 T T 0,003 T T T T
testing error (6x24x24x2 on A-both-1,2,3rel. X) —+—
004 1
0.0025 —
0.035 B
0.03 | B 0.002 |- —
0025 1
0 w
H | @ 00015 - g
0.02 !
0.015 B 0.001
001]
0.0005
0005 1
0 L L L L L L ok Wi * A AR
0 1000 2000 3000 4000 5000 6000 7000 0 200 400 600 800 1000 1200
epoch pattern

121

Example of re-trained 6x24x24x2 Pitch and Yaw Prediction

0.95

pitch

targ'et pitch (A»r'and»l reI.X') e
predicted pitch (6x24x24x2 on A-rand-1 rel.X)

07 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800
pattern
1 T T T T T T T T
target yaw (A-rand-1 rel.X) ——
predicted yaw (6x24x24x2 on A-rand-1 rel.X) -------
0.8

yaw

0.2

200 400

600

800

122

1000
pattern

1
1200 1400 1600 1800

C.2 Experiment 2

C.2.1 User-Specific vs User-Independent

User-Specific/Independent 6x8x8x2 Results

Trained Training (and | Testing data | Positional error (meters)
on participant | validation) data Without IK | With IK
A A-rot-1,2 A-rot-3 0.040119 0.034537
“ B-rot-3 0.082413 0.041151

“ C-rot-3 0.062992 0.045343

« D-rot-3 0.072478 0.051334

« E-rot-3 0.136126 0.103207

“ F-rot-3 0.075702 0.031227

B B-rot-1,2 A-rot-3 0.121719 0.105702
“ B-rot-3 0.018160 0.008828

“ C-rot-3 0.101151 0.078292

“ D-rot-3 0.081131 0.052756

“ E-rot-3 0.115567 0.080347

“ F-rot-3 0.061989 0.032971

C C-rot-1,2 A-rot-3 0.058483 0.038762
“ B-rot-3 0.074687 0.029693

“ C-rot-3 0.020500 0.014978

“ D-rot-3 0.062150 0.031291

“ E-rot-3 0.133438 0.098235

“ F-rot-3 0.083534 0.032313

D D-rot-1,2 A-rot-3 0.083640 0.064084
“ B-rot-3 0.128572 0.070447

“ C-rot-3 0.079723 0.036920

« D-rot-3 0.032585 0.020558

« E-rot-3 0.132812 0.089298

“ F-rot-3 0.044935 0.018248

123

Trained Training (and | Testing data | Positional error (meters)
on participant | validation) data Without IK | With IK
E E-rot-1,2 A-rot-3 0.196447 0.162808

“ B-rot-3 0.116020 0.061366

“ C-rot-3 0.170377 0.146013

“ D-rot-3 0.142878 0.112901

“ E-rot-3 0.029210 0.019062

“ F-rot-3 0.158870 0.090553

F F-rot-1,2 A-rot-3 0.095653 0.054545

“ B-rot-3 0.079513 0.030097

“ C-rot-3 0.114594 0.034189

“ D-rot-3 0.068562 0.040472

“ E-rot-3 0.144544 0.098880

“ F-rot-3 0.019058 0.008482

All All-rot-1,2 A-rot-3 0.077139 | 0.066033

“ B-rot-3 0.029742 | 0.011905

“ C-rot-3 0.042105 0.032734

“ D-rot-3 0.043317 0.030064

“ E-rot-3 0.076091 0.053525

“ F-rot-3 0.041604 0.016650

124

User-Specific/Independent 6x8x8x2 Summary

Trained Positional error on same | Mean positional error on
on participant participant (meters) other participants (meters)

Without IK | With IK || Without IK | With IK
A 0.040119 0.034537 0.071619 0.054452
B 0.018160 0.008828 0.096311 0.070014
C 0.020500 0.014978 0.082458 0.046059
D 0.032585 0.020558 0.093936 0.055799
E 0.029210 0.019062 0.156918 0.114728
F 0.019058 0.008482 0.100573 0.051637
All — — 0.051666 0.035152

125

User-Specific 6x8x8x2 Performance (Trained on B-rot-1,2. Tested
on B-rot-3.)

Training and Validation Error

0.035 : : : ‘
training error (6x8x8x2 on B-rot-1,2) ———
validation error (6x8x8x2 on B-rot-1,2) -------

0.03 B

0.025]

RMS

0.015 B

0.005 - S

| | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

epochs

126

Pitch and Yaw Prediction

pitch

yaw

1200

0.92 T T T B T
target pitch (B-rot-3) ———
predicted pitch (6x8x8x2 trained on B-rot-1,2 tested on B-rot-3) -------
09 4
0.88 K . ks R
0.86 - 1 i
) f | n
0.84 | AR | Aol R
082 | ¥ | -
os | W | | SRIRIA i .
0.78 | [o g
0.76
0 200 400 600 800 1000 1200
pattern
0.7 T T T T
target yaw (B-rot-3) ———
JRredicted pitch (6x8x8x2 trained on B-rot-1,2 tested on B-rot-3) ---
0.65 . ; { 4 . ’," B
06 F AW VT y]
0.55 - | 1
05 | B
0.45 B
0.4 i
035 1 1 1 1 1
0 200 400 600 800 1000
pattern

127

Positional Error (without IK)

0.14

T T T T T
Paositional Error without IK (6x8x8x2 trained on B-rot-1,2 tested on B-rot-3) ———

0.12
0.1

0.08

real

0.06

0.04

0.02

0 1 1 1 1
0 200 400 600 800 1000 1200
pattern

Positional Error (with IK)

0.06

Positional Error with K (6x8x8x2 trained on B-ro't-1,2 tested on B'-rot»s) e

0.05

0.03

real
1

0.01 R

0 200 400 600 800 1000 1200
pattern

128

User-Independent 6x8x8x2 Performance (Trained on All-rot-1,2. Tested
on B-rot-3.)

Training and Validation Error

0.045 T

training‘ error (6xéx8x2 on éll»rot-l,z) j—
validation error (6x8x8x2 on all-rot-1,2) -------

0.04

0.035

RMS

0.025

0.02

0.015

| | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epochs

0.01

129

Pitch and Yaw Prediction

,
1
|
|
|
i
~
oMo
LS
=]
o m |
ST
K=
2o
£3
o
7]
[}
o8l
=
!)
2 = ="
L © e |
s S = .
® I _ E———Cr
5 o i
° — —
° <==zT¥
2 =
£ N
© ===
= ___ ==
N o =TS
N i |
@ pLS
x
L
x A
e e
< ma==a o=~
S = S
s e
o _ ==
kel <oIoz o —
g = —-—
o
- e i
3 ——= ~
2 ——
o P
Il
o o -
] e N
o 5]

600 800 1000 1200
pattern

400

200

| =
1 -
==
=
! =
~ =
) =
Pt E
=] -
oo = |
Il\n
25
S
So
=8
IR}
=8 .
So s L
J -
L & |
T
= 2
< e —
o >
3 = <
2 <
£ =
© ===o
= =
- N _ o |
& P
< _
K ==
x
e =
2 5
I} —
> =4
= -
2 =
L © |
9 —
[} —-
o
S
! | T)
p 8 e 8 L 1o} < 0
° 3 e a © S o «©
IS] S S i

mek

600 800 1000 1200
pattern

400

200

130

Positional Error (without IK)

real

0.12

0.1

0.08

0.06

0.04

0.02

T T T T T
Positional Error without IK (6x8x8x2 trained on all-rot-1,2 tested on B-rot-3) ———

Positional Error (with IK)

real

0.08

0.07

0.04

0.03

0.02

0.01

200 400 600 800 1000 1200
pattern
" Positional Error with IK (6x8x8x'2 trained on aII-ro't-l,Z tested on B'-rot»s) e
1 m 1 1 I’A
200 400 600 800 1000 1200
pattern

131

User-Specific/Independent 6x16x16x2 Results

Trained Training (and | Testing data | Positional error (meters)
on participant | validation) data Without IK | With IK
A A-rot-1,2 A-rot-3 0.040173 0.034579
“ B-rot-3 0.083277 0.041219

“ C-rot-3 0.073310 0.046916

“ D-rot-3 0.061362 0.042859

“ E-rot-3 0.127312 0.095770

“ F-rot-3 0.063113 0.028955

B B-rot-1,2 A-rot-3 0.123143 0.106932
« B-rot-3 0.016790 0.008909

“ C-rot-3 0.103995 0.086467

“ D-rot-3 0.085726 0.059995

“ E-rot-3 0.111052 0.075793

“ F-rot-3 0.071386 0.043477

C C-rot-1,2 A-rot-3 0.072485 0.056337
“ B-rot-3 0.082735 0.034976

“ C-rot-3 0.021138 0.016561

“ D-rot-3 0.059686 0.033041

“ E-rot-3 0.117124 0.080691

“ F-rot-3 0.079918 0.035712

D D-rot-1,2 A-rot-3 0.082799 | 0.067170
“ B-rot-3 0.136402 | 0.077772

“ C-rot-3 0.077418 0.037493

“ D-rot-3 0.035564 0.022266

« E-rot-3 0.136536 0.091058

« F-rot-3 0.057128 0.022778

132

Trained Training (and | Testing data | Positional error (meters)
on participant | validation) data Without IK | With IK
E E-rot-1,2 A-rot-3 0.204102 0.168075

“ B-rot-3 0.107889 0.056517

“ C-rot-3 0.169742 0.144862

“ D-rot-3 0.156036 0.122648

“ E-rot-3 0.027790 0.017991

“ F-rot-3 0.156397 0.088604

F F-rot-1,2 A-rot-3 0.076653 0.031865

“ B-rot-3 0.087992 0.040966

“ C-rot-3 0.110658 0.035539

“ D-rot-3 0.070529 0.043833

“ E-rot-3 0.149322 0.103429

“ F-rot-3 0.017592 0.008003

All All-rot-1,2 A-rot-3 0.079740 | 0.069071

“ B-rot-3 0.031210 | 0.012496

« C-rot-3 0.040004 | 0.031303

« D-rot-3 0.039618 | 0.026007

« E-rot-3 0.078588 | 0.056827

« F-rot-3 0.037277 | 0.013988

133

User-Specific/Independent 6x16x16x2 Summary

Trained Positional error on same | Mean positional error on
on participant participant (meters) other participants (meters)

Without IK | With IK || Without IK | With IK
A 0.040173 0.034579 0.081675 0.051144
B 0.016790 0.008909 0.099060 0.074533
C 0.021138 0.016561 0.082390 0.048151
D 0.035564 0.022266 0.098057 0.059254
E 0.027790 0.017991 0.158833 0.116141
F 0.017592 0.008003 0.099031 0.051126
All — — 0.061287 0.034949

134

User-Specific/Independent 6x24x24x2 Results

Trained Training (and | Testing data | Positional error (meters)
on participant | validation) Data Without IK | With IK
A A-rot-1,2 A-rot-3 0.038565 0.033348
“ B-rot-3 0.090902 0.049774

“ C-rot-3 0.063754 0.046366

“ D-rot-3 0.072555 0.049528

« E-rot-3 0.121019 0.095486

“ F-rot-3 0.076505 0.031269

B B-rot-1,2 A-rot-3 0.118075 0.100803
« B-rot-3 0.016331 0.008619

“ C-rot-3 0.108280 0.080242

“ D-rot-3 0.086948 0.059533

“ E-rot-3 0.116111 0.078847

“ F-rot-3 0.067038 0.045172

C C-rot-1,2 A-rot-3 0.063135 0.032395
“ B-rot-3 0.098925 0.058410

“ C-rot-3 0.019484 0.016268

“ D-rot-3 0.062870 0.035313

“ E-rot-3 0.131571 0.098696

“ F-rot-3 0.075218 0.023476

D D-rot-1,2 A-rot-3 0.065771 | 0.046207
“ B-rot-3 0.104772 | 0.049985

“ C-rot-3 0.076670 0.042409

“ D-rot-3 0.038547 0.021536

« E-rot-3 0.130729 0.087677

« F-rot-3 0.061155 0.021946

135

Trained Training (and | Testing data | Positional error (meters)
on participant | validation) data Without IK | With IK
E E-rot-1,2 A-rot-3 0.200366 0.163905

“ B-rot-3 0.113674 0.062262

“ C-rot-3 0.187697 0.146950

“ D-rot-3 0.155120 0.123400

“ E-rot-3 0.026750 0.018357

“ F-rot-3 0.159763 0.089825

F F-rot-1,2 A-rot-3 0.096382 0.036872

“ B-rot-3 0.094554 0.043437

“ C-rot-3 0.106438 0.028198

“ D-rot-3 0.070543 0.044002

« E-rot-3 0.151082 0.104660

“ F-rot-3 0.016391 0.008058

All All-rot-1,2 A-rot-3 0.088615 | 0.078928

“ B-rot-3 0.027242 | 0.010946

“ C-rot-3 0.036957 0.028644

“ D-rot-3 0.038611 0.025706

“ E-rot-3 0.072780 0.049824

“ F-rot-3 0.038455 0.015918

136

User Specific/Independent 6x24x24x2 Summary

Trained Positional error on Mean positional error on
on participant || same participant (meters) || other participants (meters)
Without IK | With IK || Without IK | With IK
A 0.038565 0.033348 0.084947 0.054485
B 0.016331 0.008619 0.099290 0.072919
C 0.019484 0.016268 0.086344 0.049658
D 0.038547 0.021536 0.087819 0.049645
E 0.026750 0.018357 0.163324 0.117268
F 0.016391 0.008058 0.103800 0.051434
All — — 0.050443 0.034994

137

C.2.2 Task-Specific vs Task-Independent

Task-Specific/Independent 6x8x8x2 Results

Trained | Training (and | Testing data | Positional error (meters)
on task | validation) data Without IK | With IK
Random All-rand-1,2 A-rand-3 0.073481 0.053016
“ B-rand-3 0.059895 0.025831
“ C-rand-3 0.053332 0.026738
« D-rand-3 0.090498 0.046550
“ E-rand-3 0.074750 0.053525
“ F-rand-3 0.070369 0.028459
“ A-rot-3 0.098374 0.073343
“ B-rot-3 0.087209 0.053920
“ C-rot-3 0.085394 0.063139
« D-rot-3 0.089019 0.066801
“ E-rot-3 0.156425 0.128187
“ F-rot-3 0.068344 0.026313
Rotation All-rot-1,2 A-rand-3 0.144560 0.085220
“ B-rand-3 0.121745 0.047435
“ C-rand-3 0.133073 0.065574
“ D-rand-3 0.145361 0.084855
“ E-rand-3 0.141204 0.059909
“ F-rand-3 0.132472 0.054040
“ A-rot-3 0.077139 0.066033
“ B-rot-3 0.029742 0.011905
“ C-rot-3 0.042105 0.032734
“ D-rot-3 0.043317 0.030064
“ E-rot-3 0.076091 0.053525
“ F-rot-3 0.041604 0.016650

138

Trained | Training (and | Testing data | Positional error (meters)
on task | validation) data Without IK | With IK
Both All-both-1,2 A-rand-3 0.066444 0.046048
“ B-rand-3 0.070885 0.031548

“ C-rand-3 0.069539 0.037013

“ D-rand-3 0.094528 0.053266

“ E-rand-3 0.075415 0.051687

“ F-rand-3 0.073018 0.029724

“ A-rot-3 0.062754 0.050928

“ B-rot-3 0.033698 0.012110

“ C-rot-3 0.041985 0.032331

“ D-rot-3 0.048637 0.030512

“ E-rot-3 0.083637 0.056151

« F-rot-3 0.052108 0.026199

139

ovl

Trained | Mean positional error on random task (meters) | Mean positional error on rotation task (meters)
on task | Without IK With IK Without IK With IK
Random 0.070388 0.039020 0.097461 0.068617
Rotation 0.136403 0.066172 0.051666 0.035152
Both 0.074975 0.041548 0.053803 0.034755

Arewruing gxgxgxg juspuadopuy/oygtoadg-3ise],

141

Task-Specific 6x8x8x2 Performance (Trained on All-rot-1,2. Tested
on B-rot-3.)

Training and Validation Error

0.045 T

training‘ error (6xéx8x2 on éll»rot-l,z) j—
validation error (6x8x8x2 on all-rot-1,2) -------

0.04

0.035

RMS

0.025

0.02

0.015

| | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epochs

0.01

142

Pitch and Yaw Prediction

target pitch (B-rot-3)

|
|

|

|

|

|
~
)
&
o
o
c
S
=]
7}
2
7]
2
21
i
0y
o
=
©
c
S
=]
3 -
£
i
=
N
x
@Q
x
@Q
x
o
e
<
[}
=
o
e}
o}
]
2
S
5}
Q
o

0.78 |
0.76

L L L
@ © < o
@ @ @ ®
(<] (<] (<] o

yoxd

0.74

600 800 1000 1200
pattern

400

200

"task/6x8x8x2/toGraphDone/netout.10000.all.cut.rotland2.back.andyg.rot3" using 1:2

"task/6x8x8x2toGraphpone/netout.10000.all.cut.rotland2.back.andyg.rot3" using 1:4 ---

0.7

0.65 |

0.55 |

mek

05 |-

0.45 |

0.4

0.35

600 800 1000 1200
pattern

400

200

143

Positional Error (without IK)

real

0.12

0.1

0.08

0.06

0.04

0.02

T T T T
Positional Error without IK (6x8x8x2 trained on all-rot-1,2 B-rot-3) ———

Positional Error (with IK)

real

0.08

0.07

0.04

0.03

0.02

0.01

200 400 600 800 1000 1200
pattern
" Positional Error with IK (6x8x8x'2 trained on aII-ro't-l,Z tested on B'-rot»s) e
1 m 1 1 I’A
200 400 600 800 1000 1200
pattern

144

Task-Independent 6x8x8x2 Performance (Trained on All-rand-1,2.
Tested on B-rot-3.)

Training and Validation Error

0.08

‘ training error (6x8x‘8x2 on aII‘-rand-l,Z)‘ e
validation error (6x8x8x2 on all-rand-1,2) -------

0.07 B

RMS

0.04 |+ B

0.01 | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

epochs

145

Pitch and Yaw Prediction

target pitch (B-rot-3)

predicted pitch (6x8x8x2 trained on all-rand-1,2 tested on B-rot-3) -------

0.96

0.94
0.92 |

0.82 |

0.8 |-

0.78

0.76

600 800 1000 1200
pattern

400

200

,
,
! ==
; — -
i TS=
” -
PN =
) = ____ o
P Y IIzss
ee I
F o ==
p —
20 e
o T
BN =
o T -
3 B
DY
og
Sa
- 5wt

0.7
0.65 |

mek

0.45 |

04

0.35

600 800 1000 1200
pattern

400

200

146

Positional Error (without IK)

03 Polsitional Error withlout IK (6x8x8x2 tlrained on aII-ranld-l,Z tested on Bl-rot—3) _—
0.25
0.2
T o1s
0.1}
0.05 W

0 L L L L L

0 200 400 600 800 1000
pattern

1200

Positional Error (with IK)

0.25
Positional Error with IK (6x8x8x2 trained on all-ran'd-l,z tested on B'-rot»s) e
0.2 |
0.15
K]
<
0.1
0.05
0 1 Il M L 1 If\‘
0 200 400 600 800 1000
pattern

1200

147

Task-Specific/Independent 6x16x16x2 Results

Trained | Training (and | Testing data | Positional error (meters)
on task | validation) data Without IK | With IK
Random All-rand-1,2 A-rand-3 0.075143 0.055433
“ B-rand-3 0.050327 0.024599
“ C-rand-3 0.049021 0.025084
“ D-rand-3 0.093072 0.050899
“ E-rand-3 0.070445 0.051606
“ F-rand-3 0.072144 0.028861
“ A-rot-3 0.100249 0.084700
« B-rot-3 0.070851 0.048705
“ C-rot-3 0.101835 0.069681
“ D-rot-3 0.095847 0.070222
« E-rot-3 0.157215 0.127296
“ F-rot-3 0.069154 0.023221
Rotation All-rot-1,2 A-rand-3 0.147951 0.092124
« B-rand-3 0.122075 0.043515
« C-rand-3 0.111610 0.052208
« D-rand-3 0.137553 0.090457
“ E-rand-3 0.137541 0.058960
“ F-rand-3 0.113446 0.050330
“ A-rot-3 0.079740 0.069071
« B-rot-3 0.031210 0.012496
“ C-rot-3 0.040004 0.031303
“ D-rot-3 0.039618 0.026007
“ E-rot-3 0.078588 0.056827
« F-rot-3 0.037277 0.013988

148

Trained | Training (and | Testing data | Positional error (meters)

on task | validation) data Without IK | With IK

Both All-both-1,2 A-rand-3 0.063185 0.045241

“ B-rand-3 0.064296 0.028284

“ C-rand-3 0.066479 0.037333

“ D-rand-3 0.088564 0.046422

“ E-rand-3 0.078624 0.053906

“ F-rand-3 0.069313 0.026646

“ A-rot-3 0.086236 0.077202
“ B-rot-3 0.027752 0.011282
“ C-rot-3 0.044815 0.037205
“ D-rot-3 0.041584 0.025509
“ E-rot-3 0.079584 0.054929
“ F-rot-3 0.044385 0.016022

149

0ST

Trained | Mean positional error on random task (meters) | Mean positional error on rotation task (meters)
on task | Without IK With IK Without IK With IK
Random 0.063359 0.039414 0.099192 0.070638
Rotation 0.128363 0.064599 0.051073 0.034949
Both 0.071743 0.039639 0.054059 0.037025

Arewruing gx91x91xg9 juspuadopuy/oyadg-yse],

Task-Specific/Independent 6x24x24x2 Results

Trained | Training (and | Testing data | Positional error (meters)
on task | validation) data Without IK | With IK
Random All-rand-1,2 A-rand-3 0.069459 0.050463
“ B-rand-3 0.052375 0.022782
“ C-rand-3 0.045609 0.021571
“ D-rand-3 0.091267 0.047511
“ E-rand-3 0.072442 0.051539
“ F-rand-3 0.067791 0.025609
“ A-rot-3 0.114680 0.086604
“ B-rot-3 0.089244 0.058217
“ C-rot-3 0.096432 0.057730
“ D-rot-3 0.091298 0.062340
“ E-rot-3 0.167966 0.130771
“ F-rot-3 0.083933 0.027583
Rotation All-rot-1,2 A-rand-3 0.193513 0.131815
«“ B-rand-3 0.106075 0.039413
“ C-rand-3 0.161860 0.078213
“ D-rand-3 0.179457 0.124242
“ E-rand-3 0.126074 0.096726
“ F-rand-3 0.180229 0.082491
“ A-rot-3 0.088615 0.078928
“ B-rot-3 0.027242 0.010946
. C-rot-3 0.036957 0.028644
“ D-rot-3 0.038611 0.025706
“ E-rot-3 0.072780 0.049824
“ F-rot-3 0.038455 0.015918

151

Trained | Training (and | Testing data | Positional error (meters)

on task | validation) data Without IK | With IK

Both All-both-1,2 A-rand-3 0.064891 0.047345

“ B-rand-3 0.067553 0.030882

“ C-rand-3 0.066299 0.035790

“ D-rand-3 0.094576 0.051606

“ E-rand-3 0.071934 0.049081

“ F-rand-3 0.070988 0.024868

“ A-rot-3 0.075835 0.064613
“ B-rot-3 0.029788 0.011457
“ C-rot-3 0.040196 0.032859
“ D-rot-3 0.043116 0.026606
“ E-rot-3 0.072734 0.050486
“ F-rot-3 0.044904 0.016155

152

eql

Trained | Mean positional error on random task (meters) | Mean positional error on rotation task (meters)
on task | Without IK With IK Without IK With IK
Random 0.066491 0.0365792 0.107259 0.070541
Rotation 0.157868 0.092150 0.504433 0.034994
Both 0.072707 0.039929 0.051104 0.033696

Arewruing gX{gxpgx9 juapuadopuy/ogadg-ise],

C.3 Experiment 3
There are 3 scenarios:

1. user-specific (existing user)

(a) task-specific
(b) task-independent

2. user-independent (existing user)

(a) task-specific
(b) task-independent

3. user-independent (new user)

(a) task-specific
(b) task-independent

154

Gqr

Scenario | Training Same session Different session
data Testing | Positional error (meters) Testing | Positional error (meters)
data | Without IK | With IK data Without IK | With IK
la A-rot-1,2 || A-rot-3 | 0.040119 0.034537 A-rot-4 0.039115 0.022109
“ — — — A-highrot-1 | 0.062230 0.050472
B-rot-1,2 || B-rot-3 | 0.018160 0.008828 B-rot-4 0.046256 0.017068
“ — — — B-highrot-1 | 0.060389 0.020558
C-rot-1,2 || C-rot-3 | 0.020500 0.014978 C-rot-4 0.029144 0.023282
“ — — — C-highrot-1 | 0.081761 0.059929
D-rot-1,2 || D-rot-3 | 0.032585 0.020558 D-rot-4 0.063186 0.049094
«“ — — — D-highrot-1 | 0.064406 0.033832
E-rot-1,2 | E-rot-3 | 0.029210 0.019062 E-rot-4 0.134668 0.116665
“ — — — E-highrot-1 | 0.126602 0.107709
F-rot-1,2 | F-rot-3 | 0.019058 0.008482 F-rot-4 0.065751 0.035651
— — — F-highrot-1 | 0.089287 0.037866

(19sn Burysixs) ogradg-yse, ‘oyrdadg-19s) :e]

[OLRUAOS T°g'D

9¢T

Scenario | Training Same session Different session
data Testing | Positional error (meters) Testing | Positional error (meters)
data | Without IK | With IK data Without IK | With IK
1b A-rand-1,2 || A-rot-3 | 0.125922 0.118206 A-rot-4 0.176038 0.157846
“ — — — A-highrot-1 | 0.189838 0.169818
B-rand-1,2 | B-rot-3 | 0.065246 0.030730 B-rot-4 0.104031 0.059136
“ — — — B-highrot-1 0.104335 0.058651
C-rand-1,2 | C-rot-3 | 0.092435 0.067971 C-rot-4 0.160492 0.113941
“ — — — C-highrot-1 | 0.189634 0.101640
D-rand-1,2 || D-rot-3 | 0.091527 0.062793 D-rot-4 0.081204 0.042448
“ — — — D-highrot-1 | 0.095298 0.040094
E-rand-1,2 || E-rot-3 | 0.146762 0.119170 E-rot-4 0.085322 0.055533
“ — — — E-highrot-1 0.078098 0.052258
F-rand-1,2 || F-rot-3 0.040720 0.009740 F-rot-4 0.052926 0.041612
— — — F-highrot-1 0.075174 0.044210

(19sn Surysixa) juopuadopul-sise], ‘ofgadg-19s) :qT

LGT

Scenario | Training Same session Different session
data Testing | Positional error (meters) Testing | Positional error (meters)
data | Without IK | With IK data Without IK | With IK
2a All-rot-1,2 || A-rot-3 | 0.077139 0.066033 A-rot-4 0.072219 0.056237
“ — — — A-highrot-1 | 0.043783 0.028989
“ B-rot-3 | 0.029742 0.011905 B-rot-4 0.048714 0.023349
« — — — B-highrot-1 0.059460 0.025365
“ C-rot-3 | 0.042105 0.032734 C-rot-4 0.045707 0.037639
« — — — C-highrot-1 0.114606 0.111875
“ D-rot-3 | 0.043317 0.030064 D-rot-4 0.068261 0.050608
“ — — — D-highrot-1 | 0.098846 0.087739
“ E-rot-3 | 0.076091 0.053525 E-rot-4 0.053819 0.048960
“ — — — E-highrot-1 0.048500 0.037620
“ F-rot-3 | 0.041604 0.016650 F-rot-4 0.053531 0.038810
“ — — — F-highrot-1 | 0.085290 0.067283

(19sn Surysixs) ogmadg-yse], ‘juspuadopur-19s() :BZ

g OLIRUdDS Z'E'D

8CT

Scenario Training Same session Different session
data Testing | Positional error (meters) Testing | Positional error (meters)
data | Without IK | With IK data Without IK | With IK
2b All-rand-1,2 || A-rot-3 | 0.098374 0.073343 A-rot-4 0.129546 0.105667
« — — — A-highrot-1 | 0.130520 0.121578
“ B-rot-3 | 0.087209 0.053920 B-rot-4 0.107295 0.068951
« — — — B-highrot-1 0.106581 0.068811
“ C-rot-3 | 0.085394 0.063139 C-rot-4 0.123239 0.099243
“ — — — C-highrot-1 0.117097 0.077028
“ D-rot-3 | 0.089019 0.066801 D-rot-4 0.066801 0.074448
“ — — — D-highrot-1 | 0.095779 0.063256
“ E-rot-3 | 0.156425 0.128187 E-rot-4 0.072617 0.053218
“ — — — E-highrot-1 0.090840 0.057472
“ F-rot-3 | 0.068344 0.026313 F-rot-4 0.091423 0.057071
“ — — — F-highrot-1 | 0.078663 0.036272

(19sn Surysixa) juapuadopur-3yse], ‘yuspuadopuy-19s() :qg

6GT

Scenario | Training Same session Different session
data Testing | Positional error (meters) Testing Positional error (meters)
data | Without IK | With IK data Without IK | With IK
3a All-rot-1,2 — — — G-rot-1 0.078528 0.051229
“ — — — G-highrot-1 | 0.064281 0.034091
“ — — — H-rot-1 0.062852 0.027418
“ — — — H-highrot-1 | 0.100837 0.054026
“ — — — [-rot-1 0.067401 0.051699
“ — — — [-highrot-1 0.085606 0.074262
“ — — — J-rot-1 0.076965 0.068759
“ — — — J-highrot-1 0.077418 0.068556
“ — — — K-rot-1 0.132448 0.110777
“ — — — K-highrot-1 | 0.119939 0.113859
“ — — — L-rot-1 0.078319 0.044119
“ — — — L-highrot-1 0.095375 0.047329
“ — — — M-rot-1 0.056771 0.033929
“ — — — M-highrot-1 | 0.080057 0.055770
“ — — — N-rot-1 0.076067 0.052592
“ — — — N-highrot-1 | 0.080709 0.058065

(19sn mou) oyradg-ysey, ‘yuspuadopur-19s)) :eg

¢ OLIRUADS €°¢°D

3a Performance (Trained on All-rot-1,2. Tested on H-rot-1.)

Pitch and Yaw Prediction

pitch

yaw

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.4

0.3

0.2

0.1

target pitch (I-a-rot—l) _—
predicted pitch (6x8x8x2 trained on all-rot-1,2 tested on H-rot-1) -------

500

I
1000

L
1500
pattern

2000

I
2500

3000

target yaw (H-rot»l) e
predicted yaw (6x8x8x2 trained on all-rot-1,2 tested on H-rot-1) -------

500

|
1000

Il
1500
pattern

160

2000

I
2500

3000

Positional Error (without IK)

0.45

T T T T T
Positional Error without IK (6x8x8x2 trained on all-rot-1,2 tested on H-rot-1) ———

04 B

0.3 | B

0.25 | B

real

0.2 |- B

0.15 | B

0.05 [§

0 Il Il Il Il Il
0 500 1000 1500 2000 2500 3000

pattern

Positional Error (with IK)

0.4 T

Positional Error with IK (6x8x8xﬁ trained on aII-rdt-l,Z tested on H-rot»l) e

0.2 |- B

real

01 | B

0.05 |]

N ‘

|
0 500 1000 1500 2000 2500 3000
pattern

161

91

Scenario | Training Same session Different session
data Testing | Positional error (meters) Testing Positional error (meters)
data | Without IK | With IK data Without IK | With IK
3b All-rand-1,2 — — — G-rot-1 0.095449 0.072806
“ — — — G-highrot-1 | 0.119594 0.098030
“ — — — H-rot-1 0.092144 0.059724
“ — — — H-highrot-1 | 0.110812 0.070257
“ — — — I-rot-1 0.104535 0.085991
“ — — — [-highrot-1 0.088878 0.055725
“ — — — J-rot-1 0.102838 0.092251
“ — — — J-highrot-1 0.125206 0.094081
“ — — — K-rot-1 0.078813 0.055260
“ — — — K-highrot-1 | 0.099897 0.073900
“ — — — L-rot-1 0.111385 0.074725
“ — — — L-highrot-1 | 0.104252 0.064595
“ — — — M-rot-1 0.124584 0.095775
“ — — — M-highrot-1 | 0.157361 0.121750
“ — — — N-rot-1 0.087160 0.065902
“ — — — N-highrot-1 | 0.107097 0.081795

(19sn mou) juopuadepur-yse], ‘yuopuadopul-I9s() :eg

3b Performance (Trained on All-rand-1,2. Tested on H-rot-1.)

Pitch and Yaw Prediction

0.6

pitch
o
o
T

04

02

0.1

target pitch (I-a-rot—l) _—
predicted pitch (6x8x8x2 trained on all-rand-1,2 tested on H-rot-1) -------

0 500

0.9

I
1000

L
1500
pattern

2000

I
2500

3000

yaw

04

03

0.1

target yaw (H-rot»l) e
predicted yaw (6x8x8x2 trained on all-rand-1,2 tested on H-rot-1) -------

0 500

|
1000

Il
1500
pattern

163

2000

I
2500

3000

Positional Error (without IK)

0.45

T T T T T
Positional Error without IK (6x8x8x2 trained on all-rand-1,2 tested on H-rot-1) ———

04 B

0.3 | B

0.25 | B

real

0.2 |- B

0.15 | B

0.05]

0 Il Il Il Il Il
0 500 1000 1500 2000 2500 3000

pattern

Positional Error (with IK)

0.35

Positional Error with 1K (6x8x8x2 frained on aII-rana-l,Z tested on H-rot»l) e

0.3 | B

0.25]

0.2 |]

real

0 | | | | |
0 500 1000 1500 2000 2500 3000

pattern

164

491

Scenario Same session Different session
Mean positional error on || Mean positional error on Mean positional error on
rotation task (meters) rotation task (meters) || high-rotation task (meters)

Without IK | With IK || Without IK | With IK || Without IK With IK
la 0.026772 0.017741 0.063020 0.043978 0.080779 0.051728
1b 0.093769 0.068102 0.110002 0.078419 0.122063 0.077779
2a 0.051666 0.036152 0.057042 0.042601 0.075081 0.059812
2b 0.097461 0.068617 0.098487 0.076433 0.103247 0.070736
3a — — 0.078669 0.055065 0.088028 0.063245
3b — — 0.099614 0.075304 0.114137 0.082517

Arewrwung ¢ yudwirddxy €D

Bibliography

1]

2]

13]

[4]

[5]

6]

7]

H. Amin and R. A. Earnshaw. Enhanced avatar control using neural
networks. Virtual Reality, (5):47-53, 2000.

N. Badler. Real-time virtual humans. In Pacific Graphics, pages 4-14,
1997.

Ashweeni Beeharee. Modelling arm movements in a virtual environment
using neural networks. Master’s thesis, Department of Computer Science,

School of Science and Engineering, University of Manchester, 1999.

Ashweeni Beeharee and Roger Hubbold. Real-time avatar control with
a neural network. Advanced Interfaces Group, Department of Computer
Science, University of Manchester, Oxford Road, Manchester M13 9PL,
UK. http://aig.cs.man.ac.uk, 1999.

Alan Beverage. Modelling arm movements in a virtual environment us-
ing neural networks. Master’s thesis, Department of Computer Science,

School of Science and Engineering, University of Manchester, 1998.

Bobby Bodenheimer, Charles F. Rose, Seth Rosenthal, and John Pella.
The process of motion capture: Dealing with the data. Computer Ani-

mation and Simulation ’97, pages 3—18, 1997.

R. Boulic, P. Becheiraz, I.. Emering, and D. Thalmann. Integration of
motion control techniques for virtual human and avatar Real-Time ani-
mation. In ACM Symposium on Virtual Reality Software and Technology,
New York, NY, 1997. ACM Press.

166

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Boulic and D. Thalmann. Combined direct and inverse kinematic

control for articulated figure motion editing. Computer Graphics Forum,
11(4):189-202, 1992.

Ronan Boulic, Nadia Magnenat Thalmann, and Daniel Thalmann. A
global human walking model with real-time kinematic personification. The
Visual Computer, 6(6):344-358, 1990.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, (14):179-
211, 1990.

R. Grzeszczuk. NeuroAnimator: Fast Neural Network Emulation and
Control of Physics-Based Models. PhD thesis, Dept. of Computer Science,
University of Toronto, May 1998.

R. Grzeszczuk, D. Terzopoulos, and G. Hinton. Neuroanimator: Fast neu-
ral network emulation and control of physics-based models. In Computer
Graphics, Annual Conference Series Proc. SIGGRAPH ’98, pages 920,
july 1998.

Simon Haykin. Neural Networks: A comprehensive foundation. Prentice
Hall, second edition, 1999.

Roger Hubbold, Jon Cook, Martin Keates, Simon Gibson, Toby Howard,
and Alan Murta. Gnu/maverik: A micro-kernel for large scale virtual
environments. In Symposium on Virtual Reality Software and Technology,
December 1999.

Roger Hubbold, Martin Keates, Simon Gibson, Alan Murta, Steve Pet-
tifer, and Adrian West. Maverik programmer’s guide, 2001. Advanced

Interfaces Group, Department of Computer Science, University of Manch-
ester, Oxford Road, Manchester M13 9PL, UK. http://aig.cs.man.ac.uk.

Roger J. Hubbold and M. J. Keates. Real-time simulation of a stretcher
evacuation in a large-scale virtual environment. Computer Graphics Fo-
rum, 19(2):123-134, 2000.

167

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive mix-
tures of local experts. Neural Computation, (3):79-87, 1991.

Caroline Jay. Exagerated head movements in a head mounted display.
Master’s thesis, Department of Computer Science, School of Science and
Engineering, University of Manchester, 2001.

Shih kai Chung and James K. Hahn. Animation of human walking in

virtual environments. In Computer Animation, pages 4-15, 1999.

ChanSu Lee, SangWon Ghyme, ChanJong Park, and KwangYun Wohn.
The control of avatar motion using hand gesture. Virtual Reality Software

and Technology ’98, pages 59-66, November 1998. Taipei, Taiwan.

J.L McClelland, B.L. McNaughton, and R.C. O’Riley. Why there are
complimentary learning systems in the hippocampus and neocortex: In-
sights from the success and failures of connectionist models of learning
and memory. Psychology Review, 102(3):419-457, 1995.

Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

Jean-Christophe Nebel. Keyframe animation of articulated figures using

autocollision-free interpolation. In Furographics UK, pages 13-15, Cam-
bridge, UK, April 1999.

Jean-Christophe Nebel. Realistic collision avoidance of upper limbs based

on neuroscience models. Computer Graphics Forum, 19(3), August 2000.

Luciana Porcher Nedel, Tom Molet, and Daniel Thalmann. Animation of
virtual human bodies using motion capture devices. In Brazilian Workshop
on Virtual Reality WRV’99, November 1999. Marilia, SP.

U. Nehmzow and T.Smithers. Mapbuilding using self-organising networks

in really useful robots. Simulation of adaptive behaviour, 1991.

S. Razzaque, S. Kohn, and M. Whitton. Redirected walking. Technical
Report TRO01-007, University of North Carolina, 2001.

168

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Jeff Shufelt. Computer Science Department, Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh, PA 15213-3891.

F.J. Smieja. Multiple network systems (minos) modules: Task division
and module discrimination. In 8th AISB conference on Artificial Intelli-
gence, 16-19 April 1991.

D. Thalmann. Physical, behavioral,and sensor-based animation. In
Graphicon ’96, pages 214-221, 1996.

B. Webber and N. Badler. Animation through reactions, transition nets

and plans. In International Workshop on Human Interface Technology,
October 1995.

Douglas J. Wiley and James K. Hahn. Interpolation synthesis of articu-
lated figure motion. IEEE Computer Graphics and Applications, 17(6):39—
45, November /December 1997.

Jianmin Zhao and Norman I. Badler. Inverse kinematics positioning using
nonlinear programming for highly articulated figures. ACM Transactions
on Graphics, 13(4):313-336, 1994.

Victor B. Zordan and Jessica K. Hodgins. Tracking and modifying upper-
body human motion data with dynamic simulation. In Eurographics ’99:

Computer Animation and Sitmulation Workshop, pages 13-22, 1999.

169

